465 research outputs found

    A design principle for improved 3D AC electro-osmotic pumps

    Full text link
    Three-dimensional (3D) AC electro-osmotic (ACEO) pumps have recently been developed that are much faster and more robust than previous planar designs. The basic idea is to create a ``fluid conveyor belt'' by placing opposing ACEO slip velocities at different heights. Current designs involve electrodes with electroplated steps, whose heights have been optimized in simulations and experiments. Here, we consider changing the boundary conditions--rather than the geometry--and predict that flow rates can be further doubled by fabricating 3D features with non-polarizable materials. This amplifies the fluid conveyor belt by removing opposing flows on the vertical surfaces, and it increases the slip velocities which drive the flow.Comment: 4 pages, 4 figures, submitted to Physical Review

    Interfacial dynamics in transport-limited dissolution

    Full text link
    Various model problems of ``transport-limited dissolution'' in two dimensions are analyzed using time-dependent conformal maps. For diffusion-limited dissolution (reverse Laplacian growth), several exact solutions are discussed for the smoothing of corrugated surfaces, including the continuous analogs of ``internal diffusion-limited aggregation'' and ``diffusion-limited erosion''. A class of non-Laplacian, transport-limited dissolution processes are also considered, which raise the general question of when and where a finite solid will disappear. In a case of dissolution by advection-diffusion, a tilted ellipse maintains its shape during collapse, as its center of mass drifts obliquely away from the background fluid flow, but other initial shapes have more complicated dynamics.Comment: 5 pages, 4 fig

    Diffusion-Limited Aggregation on Curved Surfaces

    Get PDF
    We develop a general theory of transport-limited aggregation phenomena occurring on curved surfaces, based on stochastic iterated conformal maps and conformal projections to the complex plane. To illustrate the theory, we use stereographic projections to simulate diffusion-limited-aggregation (DLA) on surfaces of constant Gaussian curvature, including the sphere (K>0K>0) and pseudo-sphere (K<0K<0), which approximate "bumps" and "saddles" in smooth surfaces, respectively. Although curvature affects the global morphology of the aggregates, the fractal dimension (in the curved metric) is remarkably insensitive to curvature, as long as the particle size is much smaller than the radius of curvature. We conjecture that all aggregates grown by conformally invariant transport on curved surfaces have the same fractal dimension as DLA in the plane. Our simulations suggest, however, that the multifractal dimensions increase from hyperbolic (K0K0) geometry, which we attribute to curvature-dependent screening of tip branching.Comment: 4 pages, 3 fig

    Velocity profile of granular flows inside silos and hoppers

    Full text link
    We measure the flow of granular materials inside a quasi-two dimensional silo as it drains and compare the data with some existing models. The particles inside the silo are imaged and tracked with unprecedented resolution in both space and time to obtain their velocity and diffusion properties. The data obtained by varying the orifice width and the hopper angle allows us to thoroughly test models of gravity driven flows inside these geometries. All of our measured velocity profiles are smooth and free of the shock-like discontinuities ("rupture zones") predicted by critical state soil mechanics. On the other hand, we find that the simple Kinematic Model accurately captures the mean velocity profile near the orifice, although it fails to describe the rapid transition to plug flow far away from the orifice. The measured diffusion length bb, the only free parameter in the model, is not constant as usually assumed, but increases with both the height above the orifice and the angle of the hopper. We discuss improvements to the model to account for the differences. From our data, we also directly measure the diffusion of the particles and find it to be significantly less than predicted by the Void Model, which provides the classical microscopic derivation of the Kinematic Model in terms of diffusing voids in the packing. However, the experimental data is consistent with the recently proposed Spot Model, based on a simple mechanism for cooperative diffusion. Finally, we discuss the flow rate as a function of the orifice width and hopper angles. We find that the flow rate scales with the orifice size to the power of 1.5, consistent with dimensional analysis. Interestingly, the flow rate increases when the funnel angle is increased.Comment: 17 pages, 8 figure

    Interplay of phase boundary anisotropy and electro-autocatalytic surface reactions on the lithium intercalation dynamics in LiX_XFePO4_4 platelet-like nanoparticles

    Full text link
    Experiments on single crystal LiX_XFePO4_4 (LFP) nanoparticles indicate rich nonequilibrium phase behavior, such as suppression of phase separation at high lithiation rates, striped patterns of coherent phase boundaries, nucleation by binarysolid surface wetting and intercalation waves. These observations have been successfully predicted (prior to the experiments) by 1D depth-averaged phase-field models, which neglect any subsurface phase separation. In this paper, using an electro-chemo-mechanical phase-field model, we investigate the coherent non-equilibrium subsurface phase morphologies that develop in the abab- plane of platelet-like single-crystal platelet-like LiX_XFePO4_4 nanoparticles. Finite element simulations are performed for 2D plane-stress conditions in the abab- plane, and validated by 3D simulations, showing similar results. We show that the anisotropy of the interfacial tension tensor, coupled with electroautocatalytic surface intercalation reactions, plays a crucial role in determining the subsurface phase morphology. With isotropic interfacial tension, subsurface phase separation is observed, independent of the reaction kinetics, but for strong anisotropy, phase separation is controlled by surface reactions, as assumed in 1D models. Moreover, the driven intercalation reaction suppresses phase separation during lithiation, while enhancing it during delithiation, by electro-autocatalysis, in quantitative agreement with {\it in operando} imaging experiments in single-crystalline nanoparticles, given measured reaction rate constants

    Role of disorder in the size-scaling of material strength

    Get PDF
    We study the sample size dependence of the strength of disordered materials with a flaw, by numerical simulations of lattice models for fracture. We find a crossover between a regime controlled by the fluctuations due to disorder and another controlled by stress-concentrations, ruled by continuum fracture mechanics. The results are formulated in terms of a scaling law involving a statistical fracture process zone. Its existence and scaling properties are only revealed by sampling over many configurations of the disorder. The scaling law is in good agreement with experimental results obtained from notched paper samples.Comment: 4 pages 5 figure

    Double layer in ionic liquids: Overscreening vs. crowding

    Full text link
    We develop a simple Landau-Ginzburg-type continuum theory of solvent-free ionic liquids and use it to predict the structure of the electrical double layer. The model captures overscreening from short-range correlations, dominant at small voltages, and steric constraints of finite ion sizes, which prevail at large voltages. Increasing the voltage gradually suppresses overscreening in favor of the crowding of counterions in a condensed inner layer near the electrode. The predicted ion profiles and capacitance-voltage relations are consistent with recent computer simulations and experiments on room-temperature ionic liquids, using a correlation length of order the ion size.Comment: 4 pages + supplementary informatio

    Effective zero-thickness model for a conductive membrane driven by an electric field

    Full text link
    The behavior of a conductive membrane in a static (DC) electric field is investigated theoretically. An effective zero-thickness model is constructed based on a Robin-type boundary condition for the electric potential at the membrane, originally developed for electrochemical systems. Within such a framework, corrections to the elastic moduli of the membrane are obtained, which arise from charge accumulation in the Debye layers due to capacitive effects and electric currents through the membrane and can lead to an undulation instability of the membrane. The fluid flow surrounding the membrane is also calculated, which clarifies issues regarding these flows sharing many similarities with flows produced by induced charge electro-osmosis (ICEO). Non-equilibrium steady states of the membrane and of the fluid can be effectively described by this method. It is both simpler, due to the zero thickness approximation which is widely used in the literature on fluid membranes, and more general than previous approaches. The predictions of this model are compared to recent experiments on supported membranes in an electric field.Comment: 14 pages, 5 figure

    Diffusion and mixing in gravity-driven dense granular flows

    Full text link
    We study the transport properties of particles draining from a silo using imaging and direct particle tracking. The particle displacements show a universal transition from super-diffusion to normal diffusion, as a function of the distance fallen, independent of the flow speed. In the super-diffusive (but sub-ballistic) regime, which occurs before a particle falls through its diameter, the displacements have fat-tailed and anisotropic distributions. In the diffusive regime, we observe very slow cage breaking and Peclet numbers of order 100, contrary to the only previous microscopic model (based on diffusing voids). Overall, our experiments show that diffusion and mixing are dominated by geometry, consistent with fluctuating contact networks but not thermal collisions, as in normal fluids
    • …
    corecore