731 research outputs found

    Etude Comparative Des Couts D‘Entretien Du Sol En Culture Immature D’hevea

    Get PDF
    L'entretien au sol en culture immature d'hévéa (Hevea brasilensis) est une des composantes de l'itinéraire technique qu'il convient de maîtriser, en vue de réduire les coûts de production (main d'oeuvre, des travaux, etc.) en année d'exploitation. Aussi, la diversification des méthodes d'entretien est-elle nécessaire pour l'optimisation des coûts liés à la culture. Encore faut-il que ce choix soit économiquement raisonné. Le présent travail vise à réaliser une étude comparative des coûts d'entretien au sol des cultures immatures d'hévéa conformément aux pratiques en cours: entretiens manuel ou mécanique, chimique et mixte (chimique et mécanique). Un test d'égalité des moyennes d'échantillons appariés a montré qu'il n'y a pas eu de différence significative entre les écarts de coûts au niveau des années de culture et des opérations, si l'on développe l'entretien chimique ou l'entretien mixte. Par contre, l'analyse de l'influence des entretiens envisagés a montré une réduction de 12,31 % du temps de travail par l'entretien chimique, et de 21,04 %, en entretien mixte. La pratique de l'entretien mixte est donc à préconiser quand bien même la main d'oeuvre constitue un facteur prépondérant à maitriser.Mots clés: Hévéa, coûts d’entretien, culture immature, entretien mixte, Côte d’IvoireImmature rubber crop maintenance (Hevea brasilensis) is a technique that must be controlled in order to reduce production costs (labour, costs of work) in a year of cultivation. Thus, diversification of maintenance techniques are necessary in order to optimize production costs. Besides, this choice should be economically rational. The work aims to conduct a comparative study of the cost of immature rubber culture in accordance with current practices: mechanical, chemical and mixed techniques (chemical and mechanical). A paired sample test showed that there was no significant difference between yearly costs of culture and exploitation when chemical or mixed maintenance techniques were considered. However, analysis showed a reduction of 12.31 % of work time with chemical maintenance and 21.04 % for mixed maintenance. Therefore, mixed maintenance practice appeared to be the major workforce that has to be mastered

    Diffuse Hard X-ray Sources Discovered with the ASCA Galactic Plane Survey

    Full text link
    We found diffuse hard X-ray sources, G11.0+0.0, G25.5+0.0, and G26.6-0.1 in the ASCA Galactic plane survey data. The X-ray spectra are featureless with no emission line, and are fitted with both models of a thin thermal plasma in non-equilibrium ionization and a power-law function. The source distances are estimated to be 1-8 kpc, using the best-fit NH values on the assumption that the mean density in the line of sight is 1 H cm^-3. The source sizes and luminosities are then 4.5-27 pc and (0.8-23)x10^33 ergs/s. Although the source sizes are typical to supernova remnants (SNR) with young to intermediate ages, the X-ray luminosity, plasma temperature, and weak emission lines in the spectra are all unusual. This suggests that these objects are either shell-like SNRs dominated by X-ray synchrotron emission, like SN 1006, or, alternatively, plerionic SNRs. The total number of these classes of SNRs in our Galaxy is also estimated.Comment: 17 pages, 9 figures; to appear in Ap

    Magnetic fields from inflation?

    Full text link
    We consider the possibility of generation of the seeds of primordial magnetic field on inflation and show that the effect of the back reaction of this field can be very important. Assuming that back reaction does not spoil inflation we find a rather strong restriction on the amplitude of the primordial seeds which could be generated on inflation. Namely, this amplitude recalculated to the present epoch cannot exceed 10−32G10^{-32}G in MpcMpc scales. This field seems to be too small to be amplified to the observable values by galactic dynamo mechanism.Comment: 10 page

    Thermal and Non-thermal X-Rays from the LMC Super Bubble 30 Dor C

    Full text link
    We report on the discovery of thermal and non-thermal X-rays from the shells of the super bubble (SB) 30 Dor C in the Large Magellanic Cloud (LMC). The X-ray morphology is a nearly circular shell with a radius of about 40 pc, which is bright on the northern and western sides. The spectra of the shells are different from region to region. The southern shell shows clear emission lines, and is well fitted with a model of a thin-thermal plasma (kT = 0.21keV) in non-equilibrium ionization (NEI) plus a power-law component. This thermal plasma is located inside of the H alpha emission, which is the outer edge of the shell of the SB. The northern and western sides of the SB are dim in H alpha emission, but are bright in non-thermal (power-law) X-rays with a photon index of 2.1-2.9. The non-thermal X-ray shell traces the outer boundary of the radio shell. These features of thin-thermal and non-thermal X-rays are similar to those of SN 1006, a prototype of synchrotron X-ray shell, but the non-thermal component of 30 Dor C is about ten-times brighter than that of SN 1006. 30 Dor C is the first candidate of an extragalactic SB, in which energetic electrons are accelerating in the shell. The age is much older than that of SN 1006, and hence the particle acceleration time in this SB may be longer than those in normal shell-like SNRs. We found point-like sources associated with some of tight star clusters. The X-ray luminosity and spectrum are consistent with those of young clusters of massive stars. Point-like sources with non-thermal spectra are also found in the SB. These may be background objects (AGNs) or stellar remnants (neutron stars or black holes).Comment: 11 pages, 6 figures, Accepted for publication in ApJ, the paper with full resolution images in http://www-cr.scphys.kyoto-u.ac.jp/member/bamba/Paper/30DorC.pd

    Fine Structures of Shock of SN 1006 with the Chandra Observation

    Get PDF
    The north east shell of SN 1006 is the most probable acceleration site of high energy electrons (up to ~ 100 TeV) with the Fermi acceleration mechanism at the shock front. We resolved non-thermal filaments from thermal emission in the shell with the excellent spatial resolution of Chandra. The thermal component is extended widely over about ~ 100 arcsec (about 1 pc at 1.8 kpc distance) in width, consistent with the shock width derived from the Sedov solution. The spectrum is fitted with a thin thermal plasma of kT = 0.24 keV in non-equilibrium ionization (NEI), typical for a young SNR. The non-thermal filaments are likely thin sheets with the scale widths of ~ 4 arcsec (0.04 pc) and ~ 20 arcsec (0.2 pc) at upstream and downstream, respectively. The spectra of the filaments are fitted with a power-law function of index 2.1--2.3, with no significant variation from position to position. In a standard diffusive shock acceleration (DSA) model, the extremely small scale length in upstream requires the magnetic field nearly perpendicular to the shock normal. The injection efficiency (eta) from thermal to non-thermal electrons around the shock front is estimated to be ~ 1e-3 under the assumption that the magnetic field in upstream is 10 micro G. In the filaments, the energy densities of the magnetic field and non-thermal electrons are similar to each other, and both are slightly smaller than that of thermal electrons. in the same order for each other. These results suggest that the acceleration occur in more compact region with larger efficiency than previous studies.Comment: 24 pages, 11 figures, Accepted for publication in ApJ, the paper with full resolution images in http://www-cr.scphys.kyoto-u.ac.jp/member/bamba/Paper/SN1006.pd

    Electric-magnetic duality and the conditions of inflationary magnetogenesis

    Full text link
    The magnetogenesis scenarios triggered by the early variation of the gauge coupling are critically analyzed. In the absence of sources, it is shown that the electric and magnetic power spectra can be explicitly computed by means of electric-magnetic duality transformations. The remnants of a pre-inflationary expansion and the reheating process break explicitly electric-magnetic duality by inducing Ohmic currents. The generation of large-scale magnetic field and the physical distinction between electric and magnetic observables stems, in this class of models, from the final value reached by the conductivity of the plasma right after inflation. Specific numerical examples are given. The physical requirements of viable magnetogenesis scenarios are spelled out.Comment: 25 pages, 9 figure

    Theoretical framework of entangled-photon generation from biexcitons in nano-to-bulk crossover regime with planar geometry

    Full text link
    We have constructed a theoretical framework of the biexciton-resonant hyperparametric scattering for the pursuit of high-power and high-quality generation of entangled photon pairs. Our framework is applicable to nano-to-bulk crossover regime where the center-of-mass motion of excitons and biexcitons is confined. Material surroundings and the polarization correlation of generated photons can be considered. We have analyzed the entangled-photon generation from CuCl film, by which ultraviolet entangled-photon pairs are generated, and from dielectric microcavity embedding a CuCl layer. We have revealed that in the nano-to-bulk crossover regime we generally get a high performance from the viewpoint of statistical accuracy, and the generation efficiency can be enhanced by the optical cavity with maintaining the high performance. The nano-to-bulk crossover regime has a variety of degrees of freedom to tune the entangled-photon generation, and the scattering spectra explicitly reflect quantized exciton-photon coupled modes in the finite structure.Comment: 18 pages, 10 figure

    Governing accelerating Universe via newly reconstructed Hubble parameter by employing empirical data simulations

    Full text link
    A new parametrization of the phenomenological Hubble parameter is proposed to explore the issue of the cosmological landscape. The constraints on model parameters are derived through the Markov Chain Monte Carlo (MCMC) method by employing a comprehensive union of datasets such as 34 data points from cosmic chronometers (CC), 42 points from baryonic acoustic oscillations (BAO), a recently updated set of 1701 Pantheon+^+ (P22) data points derived from Type Ia supernovae (SNeIa), and 162 data points from gamma-ray bursts (GRB). The kinematic behavior of the models is also investigated by encompassing the transition from deceleration to acceleration and the evolution of the jerk parameter. From the analysis of the parametric models, it is strongly indicated that the Universe is currently undergoing an accelerated phase. Furthermore, the models are compared by using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), so that a comparative assessment of model performance can be available.Comment: 17 pages, 6 figure

    Growth factor in f(T) gravity

    Full text link
    We derive the evolution equation of growth factor for the matter over-dense perturbation in f(T)f(T) gravity. For instance, we investigate its behavior in power law model at small redshift and compare it to the prediction of Λ\LambdaCDM and dark energy with the same equation of state in the framework of Einstein general relativity. We find that the perturbation in f(T)f(T) gravity grows slower than that in Einstein general relativity if \p f/\p T>0 due to the effectively weakened gravity.Comment: 15 pages,1 figure; v2,typos corrected; v3, discussions added, accepted by JCA
    • 

    corecore