30 research outputs found

    Cricoid pressure: The case in favour

    No full text
    © 2015. Cricoid pressure (CP) was introduced into anaesthetic practice in the 1960s and has become the standard of care for patients at risk of aspiration during induction. However, the evidence supporting the widespread use of CP to prevent aspiration remains unconvincing. Equally, there is no robust evidence to suggest that CP causes harm, and as such, CP has become an established technique because of a mixture of anecdotal evidence and expert opinion. The future of CP lies in the answer to the question as to whether it is actually effective in preventing regurgitation or whether it is an unnecessary hazard

    Neuromuscular blockade in the elderly patient

    No full text
    Luis A Lee, Vassilis Athanassoglou, Jaideep J Pandit Nuffield Department of Anaesthetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK Abstract: Neuromuscular blockade is a desirable or even essential component of general anesthesia for major surgical operations. As the population continues to age, and more operations are conducted in the elderly, due consideration must be given to neuromuscular blockade in these patients to avoid possible complications. This review considers the pharmacokinetics and pharmacodynamics of neuromuscular blockade that may be altered in the elderly. Compartment distribution, metabolism, and excretion of drugs may vary due to age-related changes in physiology, altering the duration of action with a need for reduced dosage (eg, aminosteroids). Other drugs (atracurium, cisatracurium) have more reliable duration of action and should perhaps be considered for use in the elderly. The range of interpatient variability that neuromuscular blocking drugs may exhibit is then considered and drugs with a narrower range, such as cisatracurium, may produce more predictable, and inherently safer, outcomes. Ultimately, appropriate neuromuscular monitoring should be used to guide the administration of muscle relaxants so that the risk of residual neuromuscular blockade postoperatively can be minimized. The reliability of various monitoring is considered. This paper concludes with a review of the various reversal agents, namely, anticholinesterase drugs and sugammadex, and the alterations in dosing of these that should be considered for the elderly patient. Keywords: anesthesia, elderly, drugs, pharmacokinetics, pharmacodynamics&nbsp

    Cricoid pressure: apply - but be ready to release

    No full text

    Liposomal bupivacaine peripheral nerve block for the management of postoperative pain

    No full text
    Background Postoperative pain remains a significant issue with poor perioperative pain management associated with an increased risk of morbidity and mortality. Liposomal bupivacaine is an analgesic consisting of bupivacaine hydrochloride encapsulated within multiple, nonconcentric lipid bi-layers offering a novel method of sustained release. Objectives To assess the analgesic efficacy and adverse effects of liposomal bupivacaine infiltration peripheral nerve block for the management of postoperative pain. Search methods We identified randomised trials of liposomal bupivacaine peripheral nerve block for the management of postoperative pain. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (2016, Issue 1), Ovid MEDLINE (1946 to January Week 1 2016), Ovid MEDLINE In-Process (14 January 2016), EMBASE (1974 to 13 January 2016), ISI Web of Science (1945 to 14 January 2016), and reference lists of retrieved articles. We sought unpublished studies from Internet sources, and searched clinical trials databases for ongoing trials. The date of the most recent search was 15 January 2016. Selection criteria Randomised, double-blind, placebo- or active-controlled clinical trials of a single dose of liposomal bupivacaine administered as a peripheral nerve block in adults aged 18 years or over undergoing elective surgery at any surgical site. We included trials if they had at least two comparison groups for liposomal bupivacaine peripheral nerve block compared with placebo or other types of analgesia. Data collection and analysis Two review authors independently considered trials for inclusion in the review, assessed risk of bias, and extracted data. We performed analyses using standard statistical techniques as described in the Cochrane Handbook for Systematic Reviews of Interventions, using Review Manager 5. We planned to perform a meta-analysis, however there were insufficient data to ensure a clinically meaningful answer; as such we have produced a ’Summary of findings’ table in a narrative format, and where possible we assessed the evidence using GRADE (Grading of Recommendations Assessment, Development and Evaluation). Main results We identified seven studies that met inclusion criteria for this review. Three were recorded as completed (or terminated) but no results were published. Of the remaining four studies (299 participants): two investigated liposomal bupivacaine transversus abdominis plane (TAP) block, one liposomal bupivacaine dorsal penile nerve block, and one ankle block. The study investigating liposomal bupivacaine ankle block was a Phase II dose-escalating/de-escalating trial presenting pooled data that we could not use in our analysis. The studies did not report our primary outcome, cumulative pain score between 0 and 72 hours, and secondary outcomes, mean pain score at 12, 24, 48, 72, or 96 hours. One study reported no difference in mean pain score during the first, second, and third postoperative 24-hour periods in participants receiving liposomal bupivacaine TAP block compared to no TAP block. Two studies, both in people undergoing laparoscopic surgery under TAP block, investigated cumulative postoperative opioid dose, reported opposing findings. One found a lower cumulative opioid consumption between 0 and 72 hours compared to bupivacaine hydrochloride TAP block and one found no difference during the first, second, and third postoperative 24-hour periods compared to no TAP block. No studies reported time to first postoperative opioid or percentage not requiring opioids over the initial 72 hours. No studies reported a health economic analysis or patient-reported outcome measures (outside of pain). The review authors sought data regarding adverse events but none were available, however there were no withdrawals reported to be due to adverse events. Using GRADE, we considered the quality of evidence to be very low with any estimate of effect very uncertain and further research very likely to have an important impact on our confidence in the estimate of effect. All studies were at high risk of bias due to their small sample size (fewer than 50 participants per arm) leading to uncertainty around effect estimates. Additionally, inconsistency of results and sparseness of data resulted in further downgrading of the quality of the data. Authors’ conclusions A lack of evidence has prevented an assessment of the efficacy of liposomal bupivacaine administered as a peripheral nerve block. At present there is a lack of data to support or refute the use of liposomal bupivacaine administered as a peripheral nerve block for the management of postoperative pain. Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate

    Liposomal bupivacaine peripheral nerve block for the management of postoperative pain

    No full text
    Background Postoperative pain remains a significant issue with poor perioperative pain management associated with an increased risk of morbidity and mortality. Liposomal bupivacaine is an analgesic consisting of bupivacaine hydrochloride encapsulated within multiple, nonconcentric lipid bi-layers offering a novel method of sustained release. Objectives To assess the analgesic efficacy and adverse effects of liposomal bupivacaine infiltration peripheral nerve block for the management of postoperative pain. Search methods We identified randomised trials of liposomal bupivacaine peripheral nerve block for the management of postoperative pain. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (2016, Issue 1), Ovid MEDLINE (1946 to January Week 1 2016), Ovid MEDLINE In-Process (14 January 2016), EMBASE (1974 to 13 January 2016), ISI Web of Science (1945 to 14 January 2016), and reference lists of retrieved articles. We sought unpublished studies from Internet sources, and searched clinical trials databases for ongoing trials. The date of the most recent search was 15 January 2016. Selection criteria Randomised, double-blind, placebo- or active-controlled clinical trials of a single dose of liposomal bupivacaine administered as a peripheral nerve block in adults aged 18 years or over undergoing elective surgery at any surgical site. We included trials if they had at least two comparison groups for liposomal bupivacaine peripheral nerve block compared with placebo or other types of analgesia. Data collection and analysis Two review authors independently considered trials for inclusion in the review, assessed risk of bias, and extracted data. We performed analyses using standard statistical techniques as described in the Cochrane Handbook for Systematic Reviews of Interventions, using Review Manager 5. We planned to perform a meta-analysis, however there were insufficient data to ensure a clinically meaningful answer; as such we have produced a ’Summary of findings’ table in a narrative format, and where possible we assessed the evidence using GRADE (Grading of Recommendations Assessment, Development and Evaluation). Main results We identified seven studies that met inclusion criteria for this review. Three were recorded as completed (or terminated) but no results were published. Of the remaining four studies (299 participants): two investigated liposomal bupivacaine transversus abdominis plane (TAP) block, one liposomal bupivacaine dorsal penile nerve block, and one ankle block. The study investigating liposomal bupivacaine ankle block was a Phase II dose-escalating/de-escalating trial presenting pooled data that we could not use in our analysis. The studies did not report our primary outcome, cumulative pain score between 0 and 72 hours, and secondary outcomes, mean pain score at 12, 24, 48, 72, or 96 hours. One study reported no difference in mean pain score during the first, second, and third postoperative 24-hour periods in participants receiving liposomal bupivacaine TAP block compared to no TAP block. Two studies, both in people undergoing laparoscopic surgery under TAP block, investigated cumulative postoperative opioid dose, reported opposing findings. One found a lower cumulative opioid consumption between 0 and 72 hours compared to bupivacaine hydrochloride TAP block and one found no difference during the first, second, and third postoperative 24-hour periods compared to no TAP block. No studies reported time to first postoperative opioid or percentage not requiring opioids over the initial 72 hours. No studies reported a health economic analysis or patient-reported outcome measures (outside of pain). The review authors sought data regarding adverse events but none were available, however there were no withdrawals reported to be due to adverse events. Using GRADE, we considered the quality of evidence to be very low with any estimate of effect very uncertain and further research very likely to have an important impact on our confidence in the estimate of effect. All studies were at high risk of bias due to their small sample size (fewer than 50 participants per arm) leading to uncertainty around effect estimates. Additionally, inconsistency of results and sparseness of data resulted in further downgrading of the quality of the data. Authors’ conclusions A lack of evidence has prevented an assessment of the efficacy of liposomal bupivacaine administered as a peripheral nerve block. At present there is a lack of data to support or refute the use of liposomal bupivacaine administered as a peripheral nerve block for the management of postoperative pain. Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate

    Liposomal bupivacaine infiltration at the surgical site for the management of postoperative pain.

    No full text
    Background Despite multi-modal analgesic techniques, acute postoperative pain remains an unmet health need, with up to three quarters of people undergoing surgery reporting significant pain. Liposomal bupivacaine is an analgesic consisting of bupivacaine hydrochloride encapsulated within multiple, non-concentric lipid bi-layers offering a novel method of sustained-release analgesia. Objectives To assess the analgesic efficacy and adverse effects of liposomal bupivacaine infiltration at the surgical site for the management of postoperative pain. Search methods On 13 January 2016 we searched CENTRAL, MEDLINE, MEDLINE In-Process, Embase, ISI Web of Science and reference lists of retrieved articles. We obtained clinical trial reports and synopses of published and unpublished studies from Internet sources, and searched clinical trials databases for ongoing trials. Selection criteria Randomised, double-blind, placebo- or active-controlled clinical trials in people aged 18 years or over undergoing elective surgery, at any surgical site, were included if they compared liposomal bupivacaine infiltration at the surgical site with placebo or other type of analgesia. Data collection and analysis Two review authors independently considered trials for inclusion, assessed risk of bias, and extracted data. We performed data analysis using standard statistical techniques as described in the Cochrane Handbook for Systematic Reviews of Interventions, using Review Manager 5.3. We planned to perform a meta-analysis and produce a 'Summary of findings' table for each comparison however there were insufficient data to ensure a clinically meaningful answer. As such we have produced two 'Summary of findings' tables in a narrative format. Where possible we assessed the quality of evidence using GRADE. Main results We identified nine studies (10 reports, 1377 participants) that met inclusion criteria. Four Phase II dose-escalating/de-escalating trials, designed to evaluate and demonstrate efficacy and safety, presented pooled data that we could not use. Of the remaining five parallel-arm studies (965 participants), two were placebo controlled and three used bupivacaine hydrochloride local anaesthetic infiltration as a control. Using the Cochrane tool, we judged most studies to be at unclear risk of bias overall; however, two studies were at high risk of selective reporting bias and four studies were at high risk of bias due to size (fewer than 50 participants per treatment arm). Three studies (551 participants) reported the primary outcome cumulative pain intensity over 72 hours following surgery. Compared to placebo, liposomal bupivacaine was associated with a lower cumulative pain score between the end of the operation (0 hours) and 72 hours (one study, very low quality). Compared to bupivacaine hydrochloride, two studies showed no difference for this outcome (very low quality evidence), however due to differences in the surgical population and surgical procedure (breast augmentation versus knee arthroplasty) we did not perform a meta-analysis. No serious adverse events were reported to be associated with the use of liposomal bupivacaine and none of the five studies reported withdrawals due to drug-related adverse events (moderate quality evidence). One study reported a lower mean pain score at 12 hours associated with liposomal bupivacaine compared to bupivacaine hydrochloride, but not at 24, 48 or 72 hours postoperatively (very low quality evidence). Two studies (382 participants) reported a longer time to first postoperative opioid dose compared to placebo (low quality evidence). Two studies (325 participants) reported the total postoperative opioid consumption over the first 72 hours: one study reported a lower cumulative opioid consumption for liposomal bupivacaine compared to placebo (very low quality evidence); one study reported no difference compared to bupivacaine hydrochloride (very low quality evidence). Three studies (492 participants) reported the percentage of participants not requiring postoperative opioids over initial 72 hours following surgery. One of the two studies comparing liposomal bupivacaine to placebo demonstrated a higher number of participants receiving liposomal bupivacaine did not require postoperative opioids (very low quality evidence). The other two studies, one versus placebo and one versus bupivacaine hydrochloride, found no difference in opioid requirement (very low quality evidence). Due to significant heterogeneity between the studies (I2 = 92%) we did not pool the results. All the included studies reported adverse events within 30 days of surgery, with nausea, constipation and vomiting being the most common. Of the five parallel-arm studies, none performed or reported health economic assessments or patient-reported outcomes other than pain. Using GRADE, the quality of evidence ranged from moderate to very low. The major limitation was the sparseness of data for outcomes of interest. In addition, a number of studies had a high risk of bias resulting in further downgrading. Authors' conclusions Liposomal bupivacaine at the surgical site does appear to reduce postoperative pain compared to placebo, however, at present the limited evidence does not demonstrate superiority to bupivacaine hydrochloride. There were no reported drug-related serious adverse events and no study withdrawals due to drug-related adverse events. Overall due to the low quality and volume of evidence our confidence in the effect estimate is limited and the true effect may be substantially different from our estimate
    corecore