61 research outputs found

    DeepLOC: Deep Learning-based Bone Pathology Localization and Classification in Wrist X-ray Images

    Full text link
    In recent years, computer-aided diagnosis systems have shown great potential in assisting radiologists with accurate and efficient medical image analysis. This paper presents a novel approach for bone pathology localization and classification in wrist X-ray images using a combination of YOLO (You Only Look Once) and the Shifted Window Transformer (Swin) with a newly proposed block. The proposed methodology addresses two critical challenges in wrist X-ray analysis: accurate localization of bone pathologies and precise classification of abnormalities. The YOLO framework is employed to detect and localize bone pathologies, leveraging its real-time object detection capabilities. Additionally, the Swin, a transformer-based module, is utilized to extract contextual information from the localized regions of interest (ROIs) for accurate classification.Comment: AIST-2023 accepted pape

    Interaction of Nd:YAG Laser Radiation with Bovine Serum Albumin Solution

    Get PDF
    In this paper, the effect of Nd:YAG laser radiation on the properties of the BSA protein is investigated. A solution with a protein concentration of 5 mg/ml was irradiated for 30 minutes. After a 5-minute and 30-minute exposure, absorption spectra were taken, the particle size in the solution was determined by dynamic light scattering (DLS), the refractive index was determined, and fluorescent maps were taken. Raman spectroscopy of proteins was also performed. The results showed that after irradiation, the absorption of the protein solution decreases in the spectral range corresponding to amino acid residues. In DLS experiments, it was shown that the peak corresponding to protein molecules decreases, and the peaks corresponding to large aggregates (>100 nm) grow. Raman spectroscopy has shown that there is a decrease in intensity at a wavelength of 1570 cm-1. There were no significant changes in the refractive indices and the shape of the fluorescent maps. The data suggest that partial denaturation of proteins took place

    Electric Impedance Spectroscopy in Trees Condition Analysis: Theory and Experiment

    No full text
    Electric impedance spectroscopy is an alternative technology to existing methods that shows promising results in the agro-food industry and plant physiology research. For example, this technology makes it possible to monitor the condition of plants, even in the early stages of development, and to control the quality of finished products. However, the use of electric impedance spectroscopy is often associated with the need to organize special laboratory conditions for measurements. Our aim is to extract information about the state of health of the internal tissues of a plant’s branches from impedance measurements. Therefore, we propose a new technique using the device and model developed by us that makes it possible to monitor the condition of tree branch tissues in situ. An apple tree was chosen as the object under study, and the dependence of the impedance of the apple tree branch on the signal frequency and branch length was analyzed. The change in the impedance of an apple tree branch during drying was also analyzed. It was shown that, when a branch dries out, the conductivity of the xylem mainly decreases. The developed technique was also applied to determine the development of the vascular system of an apple tree after grafting. It was shown that the processing of the scion and rootstock sections with the help of cold atmospheric plasma and a plasma-treated solution contributes to a better formation of graft unions

    Ultrasonically Assisted Cutting of Bio-tissues in Microtomy

    Get PDF
    This is an Open Access article published under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/). This conference paper was delivered at the 44th Annual Symposium of the Ultrasonic Industry Association (UIA), Washington, DC, USA, 20th-22nd April 2015.Modern-day histology of bio-tissues for supporting stratified medicine diagnoses requires high-precision cutting to ensure high quality extremely thin specimens used in analysis. Additionally, the cutting quality is significantly affected by a wide variety of soft and hard tissues in the samples. This paper deals with development of a next generation of microtome employing introduction of controlled ultrasonic vibration to realise a hybrid cutting process of bio-tissues. The study is based on a combination of advanced experimental and numerical (finite-element) studies of multi-body dynamics of a cutting system. The quality of cut samples produced with the prototype is compared with the state-of-the-art

    Laser Scatterometric Device for Inline Measurement of Fat Percentage and the Concentration Level of Large-Scale Impurities in Milk

    No full text
    A compact laser scatterometric device for determining the fat percentage of milk filling a cylindrical tube has been designed. The device operates by detecting the angular distribution of the scattered radiation of a semiconductor laser using an axial array of photodiodes. We have experimentally found that the light-scattering indicatrix in cow milk has a monotonous dependence on milk fat content. The intensity at side- or forward-scattering angles normalized to the backscattering intensity proves to be a reliable, informative parameter. A polynomial approximation for the calibration curve of fat percentage versus normalized scattering intensity is constructed to enable fat content measurements in the fairly wide range of ~0.01–10%. Furthermore, the intensity at forward scattering angles responds to the presence of large-scale particles in milk. The device was tested in a laminar flow regime at milk flow rates up to 100 mL/s
    • …
    corecore