278 research outputs found

    Local Function Conservation in Sequence and Structure Space

    Get PDF
    We assess the variability of protein function in protein sequence and structure space. Various regions in this space exhibit considerable difference in the local conservation of molecular function. We analyze and capture local function conservation by means of logistic curves. Based on this analysis, we propose a method for predicting molecular function of a query protein with known structure but unknown function. The prediction method is rigorously assessed and compared with a previously published function predictor. Furthermore, we apply the method to 500 functionally unannotated PDB structures and discuss selected examples. The proposed approach provides a simple yet consistent statistical model for the complex relations between protein sequence, structure, and function. The GOdot method is available online (http://godot.bioinf.mpi-inf.mpg.de)

    Impact of diets with different proportions of linseed and sunflower oils on the growth, liver histology, immunological and chemical blood parameters, and proximate composition of pikeperch Sander lucioperca (L.)

    Get PDF
    The aim of the study was to determine the impact of applying different proportions of linseed (LO) and sunflower (SFO) oils in pikeperch diets on growth, histological changes in the liver, immunological and blood chemical parameters. The fish were fed isoenergetic and isoprotein feeds containing SFO (group 100SFO) or LO (group 100LO) in quantities of 67 g kg/feed, and a mixture of oils: 47 g SFO and 20 g LO kg/feed (group 70SFO/30LO) and 20 g SFO and 47 g LO kg/feed (group 30SFO/70LO). Dietary ratios of polyunsaturated fatty acids from the n-3 and n-6 series (n3/n6 index) were 0.36–2.15. Pikeperch were reared for 56 days in three replicates for each dietary treatment. Various dietary oils and ratios of n3/n6 did not impact fish growth, feed conversion ratio, viscerosomatic and hepatosomatic index, and size of the hepatocytes. Feeding the fish high quantities of LO and SO oils (groups 100LO and 100SFO) reduced the immunological response of the phagocytes and lymphocytes in the fish. Moreover, this resulted in significant differences among groups in the quantity of linolenic and linoleic acid in whole fish bodies, viscera, fillets, and livers. Various quantities of vegetable oils in the fish diets did not impact the quantity of arachidonic, eicosapentaenoic and docosahexaenoic acid in the fillets and livers. The immunological index and low quantities of linoleic acid in the fillets obtained in group 30SFO/70LO indicate that the n3/n6 dietary ratio of 1.35 was the most advantageous for feeding juvenile pikeperch feeds with vegetable oils

    Analysis of the cell surface layer ultrastructure of the oral pathogen Tannerella forsythia

    Get PDF
    The Gram-negative oral pathogen Tannerella forsythia is decorated with a 2D crystalline surface (S-) layer, with two different S-layer glycoprotein species being present. Prompted by the predicted virulence potential of the S-layer, this study focused on the analysis of the arrangement of the individual S-layer glycoproteins by a combination of microscopic, genetic, and biochemical analyses. The two S-layer genes are transcribed into mRNA and expressed into protein in equal amounts. The S-layer was investigated on intact bacterial cells by transmission electron microscopy, by immune fluorescence microscopy, and by atomic force microscopy. The analyses of wild-type cells revealed a distinct square S-layer lattice with an overall lattice constant of 10.1 ± 0.7 nm. In contrast, a blurred lattice with a lattice constant of 9.0 nm was found on S-layer single-mutant cells. This together with in vitro self-assembly studies using purified (glyco)protein species indicated their increased structural flexibility after self-assembly and/or impaired self-assembly capability. In conjunction with TEM analyses of thin-sectioned cells, this study demonstrates the unusual case that two S-layer glycoproteins are co-assembled into a single S-layer. Additionally, flagella and pilus-like structures were observed on T. forsythia cells, which might impact the pathogenicity of this bacterium
    corecore