124 research outputs found

    Branching processes in random environment die slowly

    Full text link
    Let Zn,n=0,1,...,Z_{n,}n=0,1,..., be a branching process evolving in the random environment generated by a sequence of iid generating functions f0(s),f1(s),...,% f_{0}(s),f_{1}(s),..., and let S0=0,Sk=X1+...+Xk,k1,S_{0}=0,S_{k}=X_{1}+...+X_{k},k\geq 1, be the associated random walk with Xi=logfi1(1),X_{i}=\log f_{i-1}^{\prime}(1), τ(m,n)\tau (m,n) be the left-most point of minimum of {Sk,k0}\left\{S_{k},k\geq 0\right\} on the interval [m,n],[m,n], and T=min{k:Zk=0}T=\min \left\{k:Z_{k}=0\right\} . Assuming that the associated random walk satisfies the Doney condition P(Sn>0)ρ(0,1),n,P(S_{n}>0) \to \rho \in (0,1),n\to \infty , we prove (under the quenched approach) conditional limit theorems, as nn\to \infty , for the distribution of Znt,Z_{nt}, Zτ(0,nt),Z_{\tau (0,nt)}, and Zτ(nt,n),Z_{\tau (nt,n)}, t(0,1),t\in (0,1), given T=nT=n. It is shown that the form of the limit distributions essentially depends on the location of τ(0,n)\tau (0,n) with respect to the point $nt.

    Criticality for branching processes in random environment

    Full text link
    We study branching processes in an i.i.d. random environment, where the associated random walk is of the oscillating type. This class of processes generalizes the classical notion of criticality. The main properties of such branching processes are developed under a general assumption, known as Spitzer's condition in fluctuation theory of random walks, and some additional moment condition. We determine the exact asymptotic behavior of the survival probability and prove conditional functional limit theorems for the generation size process and the associated random walk. The results rely on a stimulating interplay between branching process theory and fluctuation theory of random walks.Comment: Published at http://dx.doi.org/10.1214/009117904000000928 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The Hitting Times with Taboo for a Random Walk on an Integer Lattice

    Full text link
    For a symmetric, homogeneous and irreducible random walk on d-dimensional integer lattice Z^d, having zero mean and a finite variance of jumps, we study the passage times (with possible infinite values) determined by the starting point x, the hitting state y and the taboo state z. We find the probability that these passages times are finite and analyze the tails of their cumulative distribution functions. In particular, it turns out that for the random walk on Z^d, except for a simple (nearest neighbor) random walk on Z, the order of the tail decrease is specified by dimension d only. In contrast, for a simple random walk on Z, the asymptotic properties of hitting times with taboo essentially depend on the mutual location of the points x, y and z. These problems originated in our recent study of branching random walk on Z^d with a single source of branching

    Limit theorems for weakly subcritical branching processes in random environment

    Full text link
    For a branching process in random environment it is assumed that the offspring distribution of the individuals varies in a random fashion, independently from one generation to the other. Interestingly there is the possibility that the process may at the same time be subcritical and, conditioned on nonextinction, 'supercritical'. This so-called weakly subcritical case is considered in this paper. We study the asymptotic survival probability and the size of the population conditioned on non-extinction. Also a functional limit theorem is proven, which makes the conditional supercriticality manifest. A main tool is a new type of functional limit theorems for conditional random walks.Comment: 35 page
    corecore