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Abstract. For a branching process in random environment it is assumed that the offspring distribution of the individuals varies in
a random fashion, independently from one generation to the other. For the subcritical regime a kind of phase transition appears. In
this paper we study the intermediately subcritical case, which constitutes the borderline within this phase transition. We study the
asymptotic behavior of the survival probability. Next the size of the population and the shape of the random environment condi-
tioned on non-extinction is examined. Finally we show that conditioned on non-extinction periods of small and large population
sizes alternate. This kind of ‘bottleneck’ behavior appears under the annealed approach only in the intermediately subcritical case.

Résumé. Nous considérons un processus de branchement dans un environnement aléatoire dont la distribution des enfants des
individus varie aléatoirement de façon indépendante d’une génération à l’autre. Dans le régime sous critique, une transition de
phase apparaît. Cet article est consacré à l’étude de la région proche de la transition. Nous étudions le comportement asymptotique
de la probabilité de survie ainsi que la taille de la population et la forme de l’environnement aléatoire sous la condition de non-
extinction. Nous montrons finalement que conditionnée à la non-extinction, la population alterne des périodes de petite et de grande
taille. Ce type de comportement apparaît sous la mesure moyennée uniquement dans ce régime sous critique proche de la transition.
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1. Introduction and main results

Branching processes in random environment (BPRE), which have been introduced in [7,28], are a discrete time model
for the development of a (discrete) population. You can think of a population of plants having a one-year life-cycle.
In each year, the environment varies in a random fashion, independently from one generation to the other. Given the
environment, all individuals reproduce independently according to the same mechanism.

More precisely, let Δ be the space of all probability measures on N0. Equipped with the total variation metric, Δ

is a Polish space. Let Q be a random variable taking values in Δ. Then an infinite sequence Π = (Q1,Q2, . . .) of
i.i.d. copies of Q is called a random environment and Qn is the (random) offspring distribution of an individual at
generation n − 1. Let us denote by Zn the number of individuals in generation n. Then Zn is the sum of Zn−1 inde-
pendent random variables, each of which has distribution Qn. A sequence of N0-valued random variables Z0,Z1, . . .
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Foundation (DFG) and the Russian Foundation of Basic Research (RFBF, Grant DFG-RFBR 08-01-91954).
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is called a branching process in the random environment Π , if Z0 is independent of Π and, given Π the process
Z = (Z0,Z1, . . .) is a Markov chain with

L
(
Zn|Zn−1 = z,Π = (q1, q2, . . .)

)= q∗z
n (1.1)

for every n ∈ N = {1,2, . . .}, z ∈ N0 and q1, q2, . . . ∈ Δ, where q∗z is the z-fold convolution of the measure q . By P, we
will denote the corresponding probability measure on the underlying probability space. For convenience, we assume
that the process starts with a single founding ancestor, i.e. Z0 = 1 and we exclude the trivial case P(Q(0) = 1) = 1
throughout this paper. (We shorten Q({y}), q({y}) to Q(y), q(y).)

As it turns out, the fine structure of the offspring distributions is only of little importance and the asymptotic
behavior of the BPRE is mainly determined by the properties of logm(Q), where

m(q) =
∞∑

y=0

yq(y)

is the mean of the offspring distribution q ∈ Δ. More precisely, to describe the asymptotic behavior of the BPRE, we
have to examine the so-called associated random walk S = (Sn)n≥0 which is defined by S0 = 0 and the increments
Xn = Sn − Sn−1, n ≥ 1 with

X = logm(Q) resp. Xn = logm(Qn).

Note that the expectation of Zn, conditioned on the environment, can be expressed in terms of Sn, i.e. using (1.1) and
the assumption Z0 = 1 a.s.,

E[Zn|Π ] =
n∏

k=1

m(Qk) = exp(Sn) P-a.s.

and, averaging over the environment,

E[Zn] = E
[
m(Q)

]n
, (1.2)

where we assume that the expectation is finite. Using a first moment estimate yields P(Zn > 0|Π) = min0≤k≤n P(Zk >

0|Π) ≤ min0≤k≤n E[Zk|Π ] and thus

P(Zn > 0|Π) ≤ exp
(

min
0≤k≤n

Sk

)
P-a.s. (1.3)

This is a classical upper estimate for the survival probability. If S is an oscillating random walk, the branching process
is called critical (see [4]) resp. subcritical if S drifts to −∞. From the strong law of large numbers, it results that the
conditional non-extinction probability at n decays in this case at an exponential rate for almost every environment as
n → ∞.

As was observed by Afanasyev [1] and later independently by Dekking [18] there are three possibilities for the
asymptotic behavior of subcritical branching processes. The asymptotic behavior changes with the sign of E[XeX],
which we assume to be finite. A BPRE is weakly subcritical if E[XeX] > 0, intermediately subcritical if E[XeX] = 0
and strongly subcritical if E[XeX] < 0.

The present article is a part of several publications having started with [3–5], in which we try to develop charac-
teristic properties of the different cases. The phase transition already becomes visible when looking at the asymptotic
survival probability, i.e. there are positive constants θ1, θ2 such that P(Zn > 0) ∼ θ1P(min(S1, . . . , Sn) ≥ 0) in the
critical case and in the weakly subcritical case (see [3,4]), whereas P(Zn > 0) ∼ θ2E[m(Q)]n in the strongly subcriti-
cal case (see [5]). Characteristics of the different regimes become more evident in the typical magnitude of Zk , k ≤ n,
conditioned on {Zn > 0}. In the weakly subcritical case Zk is very large, unless k is close to 0 or n [3]. Contrarily in
the strongly subcritical case Zk stays small for all 0 ≤ k ≤ n, see [5]. The phase transition between weak and strong
subcriticality can also be observed on the level of large deviations, see [8,13,24,25]. For a more detailed comparative
discussion we refer the reader to [12].
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Here, our goal is to describe the intermediate case. It is located at the borderline between the weakly and strongly
subcritical cases. The passage corresponds to the phase transition in the model, thus a particular rich behavior can
be expected for the intermediate case. This is reflected in our results below. In particular we shall observe a kind
of bottleneck phenomenon, i.e. that conditioned on survival, there are times when the branching process is small
(bottlenecks), yet very large inbetween. This phenomenon does not occur elsewhere under the annealed approach. In
the critical regime under the quenched approach, the branching process conditioned on survival also exhibits periods
of large population sizes alternating with bottlenecks (see [31,32] and [33]).

Assumption A1. The process Z is intermediately subcritical, i.e.

E
[
XeX

]= 0.

The assumption suggests to change from P to a measure P: For every n ∈ N and every bounded, measurable
function ϕ :Δn × N

n+1
0 → R, P is given by its expectation

E
[
ϕ(Q1, . . . ,Qn,Z0, . . . ,Zn)

]= γ −n
E
[
ϕ(Q1, . . . ,Qn,Z0, . . . ,Zn)e

Sn−S0
]
,

with

γ = E
[
eX
]
.

(We include S0 in the above expression, because later on we shall also consider cases where S0 	= 0.) From (1.2) we
obtain

E[Zn] = γ n. (1.4)

The assumption E[XeX] = 0 translates into

E[X] = 0.

Thus S becomes a recurrent random walk under P.
As to the regularity of the distribution of X we make the following assumptions.

Assumption A2. The distribution of X has finite variance with respect to P or (more generally) belongs to the domain
of attraction of some stable law with index α ∈ (1,2]. It is non-lattice.

Since E[X] = 0 this means that there is an increasing sequence of positive numbers

an = n1/α�n

with a slowly varying sequence �1, �2, . . . such that for n → ∞

P
(

1

an

Sn ∈ dx

)
→ s(x)dx

weakly, where s(x) denotes the density of the limiting stable law. In the case of finite variance σ 2 = E[X2] < ∞, the
slowly varying sequence is constant, i.e. �n = σ .

Note that due to the change of measure X− always has finite variance and an infinite variance may only arise from
X+. In case of α < 2 this is the so-called spectrally positive case ([11], Section 8.2.9).

Our last assumption on the environment concerns the standardized truncated second moment of Q,

ζ(a) = 1

m(Q)2

∞∑
y=a

y2Q(y), a ∈ N.
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Assumption A3. For some ε > 0 and some a ∈ N

E
[(

log+ ζ(a)
)α+ε]

< ∞,

where log+ x = log(x ∨ 1).

See [4] for examples where this assumption is fulfilled for any α ∈ (1,2]. For binary branching processes in random
environment (where individuals have either two children or none) ζ(3) = 0, and for cases where Q is a.s. a Poisson
distribution ζ(2) ≤ 2 or a.s. a geometric distribution ζ(2) ≤ 4.

The following theorem has been obtained under quite stronger assumptions in [1,21,30]. Let

τn = min{k ≤ n|Sk ≤ S0, S1, . . . , Sn}
be the moment, when Sk takes its minimum within S0 to Sn for the first time.

Theorem 1.1. Under Assumptions A1 to A3, there is a constant 0 < θ < ∞ such that as n → ∞
P(Zn > 0) ∼ θγ nP(τn = n).

In this form the result holds in the strongly subcritical case too [22], however it differs from the corresponding
result in the weakly subcritical case [3]. Along the way of proving the subsequent results we also obtain a proof of the
above theorem (see the end of Lemma 3.3). Since P(τn = n) ∼ 1/bn with

bn = n1−α−1
�′
n

for some slowly varying sequence (�′
n) (see Lemma 2.2 below), it follows

P(Zn > 0) ∼ θ
γ n

bn

.

If σ 2 < ∞, then l′n is constant (see [11], Theorems 8.9.12/8.9.13). The next theorem deals with the branching process
conditioned on survival at time n.

Theorem 1.2. Under Assumptions A1 to A3 the distribution of Zn conditioned on the event Zn > 0 converges weakly
to a probability distribution on N. Also for every β < 1 the sequence E[Zβ

n |Zn > 0] is bounded.

For β = 1 this statement is no longer true, since E[Zn] = γ n from (1.4) and consequently E[Zn|Zn > 0] → ∞ for
n → ∞.

The next theorem captures the typical appearance of the random environment, when conditioned on survival. Let
Sn be the stochastic process with paths in the Skorohod space D[0,1] of càdlàg functions on [0,1] given by

Sn
t = Snt , 0 ≤ t ≤ 1.

We agree on the convention Snt = S�nt
, which we use correspondingly for Znt , τnt .
Also let L∗ denote a process, which can be understood as a Lévy-process on [0,1] conditioned to attain its mini-

mum at time t = 1. Formally we will define it in Section 2 in such a way that (L∗
1 −L∗

(1−t)−)0≤t≤1 is a Lévy-meander,

as introduced in [16]. If E[X2] < ∞, this is the dual process of a Brownian meander.

Theorem 1.3. Assume Assumptions A1 to A3. Then, as n → ∞, the distribution of n − τn conditioned on the event
Zn > 0 converges to a probability distribution p on N0 and(

1

an

Sn
∣∣∣Zn > 0

)
d→ L∗
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in the Skorohod space D[0,1]. Also both quantities are asymptotically independent, namely for every bounded con-
tinuous ϕ :D[0,1] → R and every B ⊂ N0

E

[
ϕ

(
1

an

Sn

)
;n − τn ∈ B

∣∣∣Zn > 0

]
→ E

[
ϕ
(
L∗)]p(B).

In the strongly subcritical case, n − τn also converges to a probability distribution on N0 (consequence of [5],
Theorem 1.3). However, this statement is not true for critical (see [4], Theorem 1.4) or weakly subcritical BPREs (see
[3], Theorem 1.1 and its proof). The limit L∗ only appears in the intermediate case.

The last theorem characterizes the typical behavior of Z, conditioned on survival. For a partial result see Theorem 1
in [2]. Recall that τnt is the moment when S0, . . . , Snt takes its minimum.

Theorem 1.4. Let 0 < t1 < · · · < tr < 1. For i = 1, . . . , r let

μ(i) = min
{
j ≤ i: inf

t≤tj
L∗

t = inf
t≤ti

L∗
t

}
.

Then under Assumptions A1 to A3 there are i.i.d. random variables V1, . . . , Vr with values in N and independent of
L∗ such that

(
(Zτnt1

, . . . ,Zτntr
)|Zn > 0

) d→ (Vμ(1), . . . , Vμ(r))

as n → ∞. Also there are i.i.d. strictly positive random variables W1, . . . ,Wr independent of L∗ such that((
Znt1

eSnt1 −Sτnt1
, . . . ,

Zntr

eSntr −Sτntr

)∣∣∣Zn > 0

)
d→ (Wμ(1), . . . ,Wμ(r))

as n → ∞.

Note that this theorem cannot be generalized to a functional limit result in Skorohod space. The limiting process
would consist of paths which are constant within excursions between descending ladder points of the process L� and
change independently from one excursion to the next. However, such a process is not càdlàg at these ladder points.

The content of Theorems 1.2 to 1.4 may be understood as follows: As in Theorem 1.2 one expects that the popu-
lation size is small at time n, conditioned on {Zn > 0}. This requires that Sn is not much larger than min(S0, . . . , Sn),
because otherwise the population would grow again at the end. Indeed this is confirmed by Theorem 1.3. Similarly one
expects that the population size is small in decreasing ladder points before n, which is stated in the first part of Theo-
rem 1.4. On the other hand within upward excursions between such points of minimum, the population development
is unaffected of the condition {Zn > 0}.

More precisely for r = 1 and t1 = t Theorem 1.4 says the following: At time τnt the population consists only of few
individuals, whereas at time nt it is large, namely of order eSnt−Sτnt -many individuals, which for every ε > 0 is bigger
than eδan with probability 1 − ε, if δ > 0 is small enough. Thus the minimum of the random walk at time τnt acts as
a bottleneck for the population, whereas afterwards the increasing random walk generates an environment, which is
favorable for growth.

Moreover: In case of r = 2 either τnt1 < τnt2 or τnt1 = τnt2 , which for the limiting process L∗ means μ(2) = 2 or
μ(2) = 1. The theorem says that in the first situation of two bottlenecks the population sizes Zτnt1

and Zτnt2
are asymp-

totically independent, as well as the sizes Znt1 and Znt2 . In the second situation of one common bottleneck certainly

Zτnt1
and Zτnt2

are equal. Interestingly this is asymptotically true as well for Znt1/eSnt1 −Sτnt1 and Znt2/eSnt2 −Sτnt2 . Here
a law of large numbers is at work, in a similar fashion as for supercritical Galton–Watson processes.

Theorems 1.3 and 1.4 may lead to the conjecture that ( 1
an

logZnt )0≤t≤1 converges to a Lévy-process, conditioned
to take its minimum at the end and reflected at zero. For the finite dimensional distributions this follows from the
theorems together with path properties of Lévy-processes. For linear fractional offspring distributions this was already
obtained in [2], Theorem 2. The proof of tightness is somewhat involved and given in a separate paper (see [14]).

The proofs rest largely on the fact that the event Zn > 0 asymptotically entails that τn takes a value close to n, as
stated in Theorem 1.3. Thus it is our strategy to replace the conditioning event Zn > 0 by events τn = n−m, which are
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easier to handle. Here we can build on some random walk theory. For the proof of the last theorem we also make use
of constructions of trees with stem going back to Lyons, Perez and Pemantle [26] and Geiger [20] for Galton–Watson
processes. They establish a connection between branching processes conditioned to survive and branching processes
with immigration.

The paper is organized as follows: In Section 2 we compile and prove several results on random walks. In Section 3
the proofs of the first three theorems are given. Section 4 deals with trees with stem and Section 5 contains the proof
of our last theorem.

2. Results on random walks

In this section we assemble several auxiliary results on the random walk S. We allow for an arbitrary initial value
S0 = x. Then we write Px(·) and Ex[·] for the corresponding probabilities and expectations. Thus P = P0.

2.1. Some asymptotic results

Let us introduce for n ≥ 1

Ln = min(S1, . . . , Sn), Mn = max(S1, . . . , Sn)

and as above for n ≥ 0

τn = min
{
k ≤ n: Sk = min(0,Ln)

}
.

There is a connection between Mn and τn, set up by the dual random walk

Ŝk = Sn − Sn−k, 0 ≤ k ≤ n.

Namely {τn = n} = {M̂n < 0} with M̂n = max(Ŝ1, . . . , Ŝn) and consequently

P(τn = n) = P(Mn < 0).

In particular P(τn = n) is decreasing.
Next define the renewal functions u : R → R and v : R → R by

u(x) = 1 +
∞∑

k=1

P(−Sk ≤ x,Mk < 0), x ≥ 0,

v(x) = 1 +
∞∑

k=1

P(−Sk > x,Lk > 0), x < 0,

v(0) = E
[
v(X);X < 0

]
,

and 0 elsewhere. In particular u(0) = 1. It is well-known that 0 < v(0) ≤ 1, for details we refer to [15], Appendix B,
and [32]. (Our function v(x) coincides with the function v(x) in [3] up to a constant.) Also u(x) and v(−x) are of
order O(x) for x → ∞.

Lemma 2.1. Under Assumption A2, for every r > 0 there exists a κ > 0 such that

E
[
e−rSn;Ln ≥ 0

]∼ κn−1a−1
n

as n → ∞.

For the proof we refer to Proposition 2.1 in [3].
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Lemma 2.2. Under Assumption A2 there are real numbers

bn = n1−α−1
�′
n, n ≥ 1

with a sequence (�′
n) slowly varying at infinity such that for every x ≥ 0

P(Mn < x) ∼ v(−x)b−1
n

as n → ∞. Also there is a constant c > 0 such that for all x ≥ 0

P(Mn < x) = P−x(Mn < 0) ≤ cv(−x)b−1
n .

Proof. The corresponding statements for P(Mn ≤ x) are well-known. Indeed the first one is contained in Theo-
rem 8.9.12 in [11], where ρ now is equal to 1 − α−1, since we are in the spectrally positive case (note that the proof
therein works for all x ≥ 0 and not only, as stated, for the continuity points of v).

For x > 0 this proof completely translates to P(Mn < x). Therefrom the case x = 0 can be treated as follows:

P(Mn < 0) = E
[
PX1(Mn−1 < 0);X1 < 0

]
= bn−1E

[
PX1(Mn−1 < 0)

bn−1
;X1 < 0

]
.

As for every x > 0, PX1(Mn < 0) ≤ PX1(Mn < x), applying the bound for PX1(Mn < x) yields that b−1
n−1PX1(Mn < 0)

is bounded by an integrable function. Thus from dominated convergence and from bn ∼ bn−1 we get

P(Mn < 0) ∼ bnE
[
v(X1);X1 < 0

]
.

Now from Eq. (2.1) below the conditional expectation in the right-hand side is equal to v(0), as defined above, which
gives the claim.

The second statement is obtained just as in Lemma 2.1 in [4]. �

2.2. The probability measures P+ and P−

The fundamental properties of u,v are the identities

E
[
u(x + X);X + x ≥ 0

]= u(x), x ≥ 0,
(2.1)

E
[
v(x + X);X + x < 0

]= v(x), x ≤ 0,

which hold for every oscillating random walk (see e.g. [32]). It follows that u and v give rise to further probability
measures P+ and P−. The construction procedure is standard and explained for P+ in detail in [4,10]. We shortly
summarize it below.

Consider the filtration F = (Fn)n≥0, where Fn = σ(Q1, . . . ,Qn,Z0, . . . ,Zn). Thus S is adapted to F and Xn+1
(as well as Qn+1) is independent ot Fn for all n ≥ 0. Then for every bounded, Fn-measurable random variable Rn

E+
x [Rn] = 1

u(x)
Ex

[
Rnu(Sn);Ln ≥ 0

]
, x ≥ 0,

E−
x [Rn] = 1

v(x)
Ex

[
Rnv(Sn);Mn < 0

]
, x ≤ 0.

These are Doob’s transforms from the theory of Markov chains. Shortly speaking P+
x and P−

x correspond to condi-
tioning the random walk S not to enter (−∞,0) and [0,∞) respectively.

The following lemma is taken from [4,10].
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Lemma 2.3. Assume Assumption A2 and let U1,U2, . . . be a sequence of uniformly bounded random variables,
adapted to the filtration F . If Un → U∞ P+-a.s. for some limiting random variable U∞, then as n → ∞

E[Un|Ln ≥ 0] → E+[U∞].
Similarly, if Un → U∞ P−-a.s., then as n → ∞

E[Un|Mn < 0] → E−[U∞].

The first part coincides with Lemma 2.5 from [4]. The proof of the second part follows exactly the same lines using
Lemma 2.2.

2.3. Two functional limit results

Because of Assumption A2 there exists a Lévy-process L = (Lt )t≥0 such that the processes Sn = ( 1
an

Snt )0≤t≤1 con-

verge in distribution to L in the Skorohod space D[0,1]. Let L− = (L−
t )0≤t≤1 denote the corresponding non-positive

Lévy-meander. This is the process (Lt )0≤t≤1, conditioned on the event supt≤1 Lt ≤ 0 (see [9] and [16]).

Lemma 2.4. Under Assumptions A1 and A2 for every x ≥ 0 and n → ∞(
1

an

Sn
∣∣∣Mn < −x

)
d→L−

in the Skorohod space D[0,1].

The proof follows exactly the same arguments as the proof of Lemma 2.3 in [4], i.e. using the suitably adapted
decomposition (2.10) therein and [19].

From L− we obtain the process L∗ as follows. Let Λ :D[0,1] → D[0,1] be the mapping g �→ ĝ given by

ĝ(t) = g(1) − g(s−), 0 ≤ t ≤ 1, with s = 1 − t

and g(0−) = 0. Λ is a continuous mapping and Λ−1 = Λ. Note that Λ maps the subset D− = {g ∈ D[0,1]:
supt≥ε g(t) < 0 for all ε > 0} onto the set D∗ = {g ∈ D[0,1]: infs≤1−ε g(s) > g(1) for all ε > 0}.

Now let

L∗ = Λ
(
L−).

Since L− ∈ D− a.s. it follows that L∗ ∈ D∗ a.s. This means that L∗ takes its infimum at the end a.s. L∗ may be viewed
as the process (Lt )0≤t≤1, conditioned to attain its infimum at t = 1. This becomes clear from the following result.

Lemma 2.5. Under Assumptions A1 and A2, for n → ∞(
1

an

Sn
∣∣∣τn = n

)
d→ L∗

in D[0,1].

Proof. In Lemma 2.4, we may replace Sn by the process T n given by T n
t = Sn

t+1/n for t ≤ 1 − 1
n

and T n
t = Sn

1 for

1 − 1
n

< t ≤ 1. It follows that

(
1

an

Λ
(
T n
)∣∣∣Mn < 0

)
d→ L∗.
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Now Λ(T n) is obtained from Sn, if we just interchange the jumps in Sn from X1, . . . ,Xn to Xn . . . ,X1. This corre-
sponds to proceeding to the dual random walk, and it follows(

1

an

Sn
∣∣∣τn = n

)
d→ L∗.

This is the claim. �

We end this section by some remarks on the distribution of L∗
1. First L1 has a stable distribution, thus it has

a density with respect to Lebesgue measure and is unbounded from below. Since we are in the spectrally positive
case, L has no negative jumps a.s. Therefore we may use fluctuation theory for the process L↓, which is the Lévy-
process, conditioned to take values in (−∞,0], see [9], Section VII.3. From Corollary 16 therein it follows that L

↓
1

has a density and is unbounded from below, too. As stated in [16] (see also [15]) the distributions of L
↓
1 and L∗

1 are
mutually absolutely continuous, therefore also the distribution ν of L∗

1 has a density and is not concentrated on some
compact interval.

2.4. Further limit results

Let Qj = Q1 for j ≤ 0.

Lemma 2.6. Under Assumptions A1 and A2 for m ≥ 0, k ≥ 1, for n → ∞ the distribution of(
(Qτn+1, . . . ,Qτn+k), (Qτn, . . . ,Qτn−k+1),

(Sτn, Sn−m)

an

)

converges weakly to a probability measure μ+
k ⊗ μ−

k ⊗ μ, where μ+
k , μ−

k are the distributions of (Q1, . . . ,Qk) under
the probability measures P+, P− and μ is a non-degenerate probability measure on R

2, i.e. the measure is not a Dirac
measure.

Proof. Let for r ≥ 0

Q+(r) = (Qr+1, . . . ,Qr+k), Q−(r) = (Qr, . . . ,Qr−k+1).

Let φ1, φ2 :Δk → R be bounded functions and φ3, φ4 : R → R be bounded continuous functions. A decomposition
with respect to τn yields

E
[
φ1
(
Q−(τn)

)
φ2
(
Q+(τn)

)
φ3

(
Sτn

an

)
φ4

(
Sn−m − Sτn

an

)]

=
n∑

r=0

E
[
φ1
(
Q−(r)

)
φ2
(
Q+(r)

)
φ3

(
Sr

an

)
φ4

(
Sn−m − Sr

an

)
; τn = r

]
. (2.2)

Letting Lr,n = min(Sr+1, . . . , Sn) − Sr and using duality we get for r > k

E
[
φ1
(
Q−(r)

)
φ2
(
Q+(r)

)
φ3

(
Sr

an

)
φ4

(
Sn−m − Sr

an

)
; τn = r

]

= E
[
φ1
(
Q−(r)

)
φ3

(
Sr

an

)
φ2
(
Q+(r)

)
φ4

(
Sn−m − Sr

an

)
; τr = r,Lr,n ≥ 0

]

= E
[
φ1
(
Q−(r)

)
φ3

(
Sr

an

)
; τr = r

]
E
[
φ2
(
Q+(0)

)
φ4

(
Sn−m−r

an

)
;Ln−r ≥ 0

]

= E
[
φ1
(
Q+(0)

)
φ3

(
Sr

an

)
;Mr < 0

]
E
[
φ2
(
Q+(0)

)
φ4

(
Sn−m−r

an

)
;Ln−r ≥ 0

]
.
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Moreover for r > k

E[φ1(Q
+(0))φ3(Sr/an);Mr < 0]

P(Mr < 0)

= E
[
φ1
(
Q+(0)

)
ESk

[
φ3

(
Sr−k

an

)∣∣∣Mr−k < 0

]
PSk

(Mr−k < 0)

P(Mr < 0)
;Mk < 0

]
.

Therefore by Lemmas 2.2, 2.4 and dominated convergence, if rn ∼ tn for some 0 < t < 1, then arn/an ∼ t1/α and

E[φ1(Q
+(0))φ3(Srn/an);Mrn < 0]

P(Mrn < 0)

→ E
[
φ1
(
Q+(0)

)
v(Sk);Mk < 0

]
E
[
φ3
(
t1/αL−

1

)]
= E−[φ1

(
Q+(0)

)]
E
[
φ3
(
t1/αL−

1

)]
.

In much the same way, letting L+ be the positive Lévy meander and using Lemma 2.3 from [4], it follows that

E[φ2(Q
+(0))φ4(Sn−m−rn/an);Ln−rn ≥ 0]

P(Ln−rn ≥ 0)

→ E+[φ2
(
Q+(0)

)]
E
[
φ4
(
(1 − t)1/αL+

1

)]
.

Since P(Mrn < 0)P(Ln−rn ≥ 0) = P(τn = rn), we obtain for rn ∼ tn and 0 < t < 1

E
[
φ1
(
Q−(rn)

)
φ2
(
Q+(rn)

)
φ3

(
Srn

an

)
φ4

(
Sn−m − Srn

an

)∣∣∣τn = rn

]

→ E−[φ1(Q1, . . . ,Qk)
]
E+[φ2(Q1, . . . ,Qk)

]
E
[
φ3
(
t1/αL−

1

)]
E
[
φ4
(
(1 − t)1/αL+

1

)]
.

Now in view of Assumption A2, the generalized arcsine law (see [11]) is valid for τn, i.e. τn/n is convergent in
distribution to a Beta-distribution with a density, which we denote by g(t)dt . Therefore it follows from (2.2) that

E
[
φ1
(
Q−(τn)

)
φ2
(
Q+(τn)

)
φ3

(
Sτn

an

)
φ4

(
Sn−m − Sτn

an

)]

→ E−[φ1(Q1, . . . ,Qk)
]
E+[φ2(Q1, . . . ,Qk)

]
×
∫ 1

0
E
[
φ3
(
t1/αL−

1

)]
E
[
φ4
(
(1 − t)1/αL+

1

)]
g(t)dt.

This gives the claim. �

Next let 0 = t0 < t1 < · · · < tr < tr+1 = 1 and for 1 ≤ i ≤ r

σi,n = min{k: nti−1 ≤ k ≤ nti, Sk ≤ Sj for all nti−1 ≤ j ≤ nti} (2.3)

be the first moment, when Sk takes its minimum between nti−1 and nti .

Lemma 2.7. Let m ≥ 0 and k, r ≥ 1. Then under Assumptions A1, A2, given the event τn−m = n − m, the random
elements in Δ2k

Q(i) = (
(Qσi,n+1, . . . ,Qσi,n+k), (Qσi,n

, . . . ,Qσi,n−k+1)
)
, i = 1, . . . , r,

are for n → ∞ asymptotically independent with asymptotic distribution μ+
k ⊗ μ−

k . Also, given τn−m = n − m, they
are asymptotically independent from the random vector

1

an

(Sσ1,n
, Snt1, . . . , Sσr,n , Sntr ).
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Proof. Recall from above that, given τn = n, the distribution of 1
an

Sn is weakly convergent to a probability measure
ν on R

−, the distribution of L∗
1, which possesses a density and is not concentrated on a compact interval.

Let

σr+1,n = min{k: ntr ≤ k ≤ n − m,Sk ≤ Sj for all ntr ≤ j ≤ n − m}
and for i ≤ r

Ui = 1

an

(Sσi,n
− Snti−1), Vi = 1

an

(Snti − Snti−1), Vr+1 = 1

an

(Sn−m − Sntr )

and Wi = (Ui,Vi). Since (an) is regularly varying, from the last lemma and from our assumptions on indepen-
dence it follows that the random variables Q(1), . . . ,Q(r),W1, . . . ,Wr,Vr+1 are asymptotically independent. The
event σr+1,n = n−m is independent of Q(1), . . . ,Q(r),W1, . . . ,Wr and thus only affects Vr+1. Thus from Lemma 2.6

(
Q(1), . . . ,Q(r),W1, . . . ,Wr,Vr+1|σr+1,n = n − m

) d→ (
μ+

k ⊗ μ−
k

)⊗r
μ1 ⊗ · · · ⊗ μr ⊗ ν,

where the probability measures μi also depend on ti − ti−1. If a Borel set A ⊂ R
2r+1 satisfies μ1 ⊗· · ·⊗μr ⊗ν(A) > 0

and μ1 ⊗ · · · ⊗ μr ⊗ ν(∂A) = 0, it follows

(
Q(1), . . . ,Q(r)|(W1, . . . ,Wr,Vr+1) ∈ A,σr+1,n = n − m

) d→ (
μ+

k ⊗ μ−
k

)⊗r
.

We apply this result to A of the form A = B ∩ C, where the Borel set B satisfies the same conditions as A, and

C =
{

(u1, v1, . . . , ur , vr , vr+1): uj >

r+1∑
i=j

vi for j ≤ r

}
.

Since ν is not concentrated on a compact set, μ1 ⊗· · ·⊗μr ⊗ ν(C) > 0, and because ν has a density, μ1 ⊗· · ·⊗μr ⊗
ν(∂C) = 0. As

{τn−m = n − m} = {Sσj,n
> Sn−m for j ≤ r, σr+1,n = n − m}

= {
(W1, . . . ,Wr,Vr+1) ∈ C,σr+1,n = n − m

}
we obtain

(
Q(1), . . . ,Q(r)|(W1, . . . ,Wr,Vr+1) ∈ B,τn−m = n − m

) d→ (
μ+

k ⊗ μ−
k

)⊗r
.

The choice B = R
2r+1 gives the asymptotic distribution of (Q(1), . . . ,Q(r)). Since (Sσ1,n

, Snt1, . . . , Sσr,n , Sntr ) is ob-
tained from (W1, . . . ,Wr,Vr+1) by linear combinations, also the asymptotic independence follows. �

3. Proofs of Theorems 1.1 to 1.3

Define

ηk =
∞∑

y=0

y(y − 1)Qk(y)

/( ∞∑
y=0

yQk(y)

)2

, k ≥ 1.

Lemma 3.1. Assume Assumptions A1 to A3. Then for all x ≥ 0

∞∑
k=0

ηk+1e−Sk < ∞ P+
x -a.s.
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and for all x ≤ 0

∞∑
k=1

ηkeSk < ∞ P−
x -a.s.

The proof of the first statement can be found in [4] (see Lemma 2.7 therein under conditions B1 and B2), the
second one is proven in just the same way.

Lemma 3.2. Under Assumptions A1 to A3, there is a non-vanishing finite measure p′ on N0 with p′(0) = 0 such that
the following holds: Let Yn be uniformly bounded random variables of the form Yn = ϕn(Q1, . . . ,Qn−rn) with natural
numbers rn → ∞ and let � be a real number such that for every m ∈ N0

E[Yn|τn−m = n − m] → �

as n → ∞. Also let ψ : N0 → R be a bounded function with ψ(0) = 0. Then

E
[
Ynψ(Zn)e

−Sn |τn = n
]→ �

∫
ψ dp′

as n → ∞.

Proof. Let fn(s) =∑
k≥0 skQn(k), 0 ≤ s ≤ 1, be the (random) generating function of Qn, n ≥ 1, and denote

fj,k =
⎧⎨
⎩

fj+1 ◦ fj+2 ◦ · · · ◦ fk for 0 ≤ j < k,

id for j = k,

fj ◦ fj−1 ◦ · · · ◦ fk+1 for 0 ≤ k < j.

For 0 ≤ k < n set

Lk,n = min(Sk+1, . . . , Sn) − Sk and Ln,n = 0.

First we look at the case ψ(z) = 1 − sz with 0 ≤ s < 1 (with 00 = 1). We decompose the expectation according
to the value of τn−m for some fixed m ∈ N0. For convenience we assume 0 ≤ Yn ≤ 1. Then for l > m because of
E[Zn|Π ] = eSn a.s. and 1 − sz ≤ z

E
[
Yn

(
1 − sZn

)
e−Sn; τn−m < n − l, τn = n

]
≤ E

[
Zne−Sn; τn−m < n − l, τn = n

]= P(τn−m < n − l, τn = n).

From duality

P(τn−m < n − l, τn = n) = P
(
Mn < 0, max

m≤j≤n
Sj < max

l<j≤n
Sj < 0

)
≤ P(Sk ≥ Sm for some l < k ≤ n,Mn < 0)

and in view of Lemma 2.3

P(Sk ≥ Sm for some l < k ≤ n,Mn < 0)

∼ P−(Sk ≥ Sm for some k > l)P(Mn < 0).

Since Sk → −∞ P−-a.s. (see Lemma 2.6 in [4]), we obtain that for given ε > 0 and m ∈ N the estimate P−(Sk ≥
Sm for some k > l) < ε is valid, if l is chosen large enough. Altogether this implies that for l sufficiently large

E
[
Yn

(
1 − sZn

)
e−Sn; τn = n

]
= E

[
Yn

(
1 − sZn

)
e−Sn; τn−m ≥ n − l, τn = n

]+ χ1
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where |χ1| ≤ εP(Mn < 0) = εP(τn = n).
Next from the branching property

E
[
Yn

(
1 − sZn

)
e−Sn; τn−m ≥ n − l, τn = n

]
= E

[
Yn

(
1 − f0,n(s)

)
e−Sn; τn−m ≥ n − l, τn = n

]
.

By means of duality∣∣E[Yn

(
1 − f0,n(s)

)
e−Sn; τn−m ≥ n − l, τn = n

]
− E

[
Yn

(
1 − fn−m,n(s)

)
e−(Sn−Sn−m); τn−m ≥ n − l, τn = n

]∣∣
≤ E

[∣∣(1 − f0,n(s)
)
e−Sn − (

1 − fn−m,n(s)
)
e−(Sn−Sn−m)

∣∣; τn = n
]

= E
[∣∣(1 − fn,0(s)

)
e−Sn − (

1 − fm,0(s)
)
e−Sm

∣∣;Mn < 0
]
.

Now Un(s) = (1 − fn,0(s))e−Sn is decreasing in n (see Lemma 2.3 in [21]) with limit U∞(s), and for given ε > 0 we
obtain from Lemma 2.3 for n large enough∣∣E[Yn

(
1 − f0,n(s)

)
e−Sn; τn−m ≥ n − l, τn = n

]
− E

[
Yn

(
1 − fn−m,n(s)

)
e−(Sn−Sn−m); τn−m ≥ n − l, τn = n

]∣∣
≤ 2E−[Um(s) − U∞(s)

]
P(τn = n) ≤ εP(τn = n),

if only m is chosen large enough. Now {τn−m ≥ n − l, τn = n} may be decomposed as
⋃l

j=m({τn−j = n − j} ∪
{Ln−j,n−m ≥ 0, τn = n}) and for large n by Yn = ϕn(Q1, . . . ,Qn−rn)

E
[
Yn

(
1 − fn−m,n(s)

)
e−(Sn−Sn−m); τn−j = n − j,Ln−j,n−m ≥ 0, τn = n

]
= E[Yn; τn−j = n − j ]E[(1 − fj−m,j (s)

)
e−(Sj −Sj−m);Lj−m ≥ 0, τj = j

]
.

By assumption E[Yn; τn−j = n − j ] ∼ �P(τn = n). Putting pieces together we obtain

E
[
Yn

(
1 − sZn

)
e−Sn; τn = n

]
= E

[
Yn

(
1 − sZn

)
e−Sn; τn−m ≥ n − l, τn = n

]+ χ1

= �P(τn = n)

l∑
j=m

E
[(

1 − fj−m,j (s)
)
e−(Sj −Sj−m);Lj−m ≥ 0, τj = j

]+ χ2

where |χ2| ≤ 3εP(τn = n). In particular we may apply this formula for Yn = 1, to obtain for large n∣∣E[Yn

(
1 − sZn

)
e−Sn; τn = n

]− �E
[(

1 − sZn
)
e−Sn; τn = n

]∣∣≤ 6εP(τn = n)

and our computations boil down to the formula

E
[
Yn

(
1 − sZn

)
e−Sn; τn = n

]∼ �E
[(

1 − sZn
)
e−Sn; τn = n

]
.

The right-hand side may be written as �E[(1 − fn,0(s))e−Sn;Mn < 0] and another application of Lemma 2.3 gives
altogether

E
[
Yn

(
1 − sZn

)
e−Sn; τn = n

]∼ �E−[U∞(s)
]
P(τn = n).

In view of sz1z>0 = (1 − 0z) − (1 − sz) this implies

E
[
Yns

Zne−Sn;Zn > 0, τn = n
]∼ �h(s)P(τn = n) (3.1)
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with h(s) = E−[U∞(0) − U∞(s)].
Now we show that h(1) = E−[U∞(0)] > 0. This follows from an estimate due to Agresti (see [6] and the proof of

Proposition 3.1 in [4]), which in our case reads

(
1 − fk,0(s)

)
e−Sk ≥

(
1

1 − s
+

k∑
i=1

ηie
Si

)−1

.

Letting k → ∞ Lemma 3.1 implies U∞(s) > 0 E−-a.s. and thus h(s) > 0 for all s < 1. For s = 0 it follows that
h(1) = E−[U∞(0)] > 0.

Also from E[Zne−Sn; τn = n] = E[E[Zn|Π ]e−Sn; τn = n] = P(τn = n) and from 1 − sz ≤ z(1 − s) we get

E
[
Un(s);Mn < 0

] = E
[(

1 − sZn
)
e−Sn; τn = n

]
≤ (1 − s)E

[
Zne−Sn; τn = n

]= (1 − s)P(τn = n)

which for n → ∞ implies h(1) − h(s) = E−[U∞(s)] ≤ 1 − s. Therefore h is continuous at s = 1. Our claim follows
now from (3.1) and the continuity theorem for generating functions. �

Lemma 3.3. Let Yn fulfil the same conditions as in Lemma 3.2. Then under Assumptions A1 to A3 there is a non-
vanishing finite measure p′′ on N × N0 such that for every bounded ψ : N × N0 → R

E[Ynψ(Zn,n − τn);Zn > 0]
γ nP(τn = n)

→ �

∫
ψ dp′′

as n → ∞.

Proof. We have for fixed j ∈ N0 and every n ∈ N with n > j

γ −n
E
[
Ynψ(Zn,n − τn);Zn > 0, τn = n − j

]
= E

[
Ynψj (Zn−j )e

−Sn−j ; τn−j = n − j
]

with ψj(z) = E[ψ(Zj , j)e−Sj ;Zj > 0,Lj ≥ 0|Z0 = z] for z > 0 and ψj(0) = 0. Also there is a finite measure p′
j

such that
∫

ψj dp′ = ∫
ψ(·, j)dp′

j . From the preceding lemma

E[Ynψ(Zn,n − τn);Zn > 0, τn = n − j ]
γ nP(τn = n)

→ �

∫
ψ(·, j)dp′

j .

In particular p′
0 is non-vanishing. Thus it remains to show that for given ε > 0 there is a natural number k such that

γ −n
E
[
Ynψ(Zn,n − τn);Zn > 0, τn ≤ n − k

]≤ εP(τn = n)

for large n. Without loss of generality 0 ≤ Yn ≤ 1 and 0 ≤ ψ ≤ 1. Then, using the inequality P(Zi > 0|Π) ≤ eSi , we
have

γ −n
E
[
Ynψ(Zn,n − τn);Zn > 0, τn ≤ n − k

] ≤ E
[
e−Sn;Zn > 0, τn ≤ n − k

]
≤

n−k∑
i=0

E
[
e−Sn;Zi > 0, τi = i,Li,n ≥ 0

]

≤
n−k∑
i=0

E
[
eSi−Sn; τi = i,Li,n ≥ 0

]

=
n−k∑
i=0

P(τi = i)E
[
e−Sn−i ;Ln−i ≥ 0

]
.
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From Lemmas 2.1, 2.2 both P(τn = n) and E[e−Sn;Ln ≥ 0] are regularly varying with negative indices. Therefore for
large n

γ −n
E
[
Ynψ(Zn,n − τn);Zn > 0, τn ≤ n − k

]
≤ E

[
e−Sn/3;Ln/3 ≥ 0

] ∑
i≤n/2

P(τi = i)

+ P(τn/3 = n/3)
∑

k≤j≤n/2

E
[
e−Sj ;Lj ≥ 0

]
,

where we used th fact that P(τn = n) = P(Mn < 0) is non-increasing in n. Also E[e−Sn;Ln ≥ 0] = o( 1
n
) and∑

i≤n P(τi = i) = O(nP(τn = n)) and
∑

j≥1 E[e−Sj ;Lj ≥ 0] < ∞. Therefore for every ε > 0 the right-hand side
of the inequality above is bounded by εP(τn = n), if k is large enough. This gives the claim. �

Choosing Yn = 1 and ψ = 1N×N0 , we obtain Theorem 1.1.

Proof of Theorem 1.2. In view of Theorem 1.1, the first part is a special case of Lemma 3.3 with Yn = 1 and
ψ(Zn,n − τn) = 1 − sZn . For the second part we use Hölder’s inequality (with 1/p = β,1/q = 1 − β) and (1.3)

γ −n
E
[
Zβ

n

] = E
[
E
[
Zβ

n 1Zn>0|Π
]
e−Sn

]
≤ E

[
E[Zn|Π ]βP(Zn > 0|Π)1−βe−Sn

]≤ E
[
e(1−β)(Ln−Sn)

]
.

Again we decompose with τn and obtain

γ −n
E
[
Zβ

n

] ≤
n∑

i=0

E
[
e(1−β)(Ln−Sn); τi = i,Li,n ≥ 0

]

=
n∑

i=0

P(τi = i)E
[
e−(1−β)Sn−i ;Ln−i ≥ 0

]
.

As above we show by means of Lemma 2.1 with r = 1 − β that this quantity is of order P(τn = n), and the claim
follows. �

Proof of Theorem 1.3. Again the first part is a special case of Lemma 3.3. Next let ϕ :D[0,1] → R be bounded and
continuous. We apply Lemma 3.3 to Yn = ϕ( 1

an
S̄n), where S̄n

t = Snt∧rn with natural numbers rn → ∞. If n − rn =
o(n), then it follows from Lemma 2.5 and standard arguments that E[Yn|τn−m = n − m] → E[ϕ(L∗)]. Lemma 3.3
yields

E

[
ϕ

(
1

an

S̄n

)∣∣∣Zn > 0

]
→ E

[
ϕ
(
L∗)].

Thus ( 1
an

S̄n|Zn > 0)
d→ L∗. Also conditional asymptotic independence follows from Lemma 3.3. Finally for fixed r

P
(|Xn−r+1| + · · · + |Xn| ≥ √

an;Zn > 0
)

≤ P(Zn−r > 0)P
(|X1| + · · · + |Xr | ≥ √

an

)= o
(
P(Zn > 0)

)
.

This holds true also, if r = rn → ∞ sufficiently slow. It follows

γ −n
P

(
1

an

sup
∣∣Sn − S̄n

∣∣≥ ε

∣∣∣Zn > 0

)
→ 0
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for all ε > 0. Therefore ( 1
an

(Sn − S̄n)|Zn > 0)
d→ 0 in D[0,1] and consequently ( 1

an
Sn|Zn > 0)

d→ L∗. This finishes
the proof. �

4. Trees with stem

For every n = 0,1, . . . ,∞ let Tn be the set of all ordered rooted trees of height exactly n. For a precise definition we
refer to the coding of ordered trees and their nodes given by Neveu [27]. Then T≥n = Tn ∪ Tn+1 ∪ · · · ∪ T∞ is the set
of ordered rooted trees of at least height n. With [ ]n : T≥n → Tn we denote the operation of pruning a tree t ∈ T≥n to
a tree [t]n ∈ Tn of height exactly n by eliminating all nodes of larger height.

For n = 0,1, . . . ,∞ a tree with a stem of height n, shortly a trest of height n, is a pair

t = (t, k0k1 . . . kn),

where t ∈ T≥n and k0, . . . , kn are nodes in t such that k0 is the root (founding ancestor) and ki is an offspring of ki−1.
Thus ki belongs to generation i. We call k0 . . . kn the stem within t, it is determined by kn. T ′

n denotes the set of all
trests of height n. Such a construction is in the spirit of spinal decompositions as in [17,23] and others.

A trest t = (t, k0k1 . . . kn) of height n can also be pruned at height m ≤ n to obtain the trest of height m

[t]m = ([t]m,k0 . . . km

)
.

To every tree t ∈ T≥n there belongs a unique trest

〈t〉n = ([t]n, k0(t) . . . kn(t)
)

of height n, where k0(t) . . . kn(t) is the leftmost stem, which can be fitted into [t]n. Notice that this stem is uniquely
determined, since t is ordered and of at least height n.

Now let π = (q1, q2, . . .) be a fixed environment. Define the distribution q̃i by its weights

q̃i (y) = 1

m(qi)
yqi(y), y = 0,1, . . .

Then a corresponding LPP-trest (Lyons–Pemantle–Peres trest) is the random trest T̃ = (T̃ , K̃0K̃1 . . .) with values in
T ′∞ satisfying the following properties:

Given Π = (q1, q2, . . .) a.s.

• the offspring numbers of all individuals are independent random variables,
• the offspring number of K̃i−1 has distribution q̃i and the offspring number of any other individual in generation

i − 1 has distribution qi , and
• the node K̃i is uniformly distributed among all children of K̃i−1, given the offspring number of K̃i−1 and given all

other random quantities.

Shortly speaking: From the infinite stem individuals grow according to a size biased distribution, and from the other
individuals ordinary branching trees arise to the right and left of the stem. Such type of trests have been considered by
Lyons, Peres and Pemantle [26] in the Galton–Watson case.

Let Z̃n be the population size of the LPP-trest in generation n.

Lemma 4.1. Under Assumptions A1 to A3, as n → ∞

e−SnZ̃n → W+ P+-a.s.

with some random variable W+ fulfilling W+ > 0 P+-a.s.
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Proof. We use the representation

Z̃n = 1 +
n−1∑
i=0

Z̃i
n

where Z̃i
n is the number of individuals in generation n other than K̃n, which descent from K̃i but not from K̃i+1. Thus

E[Z̃i
i+1|Π ] =∑

y yQ̃i+1(y) − 1 = eXi+1ηi+1 and a.s.

E
[
Z̃i

n|Π
]= eSn−Si+1 E

[
Z̃i

i+1|Π
]= ηi+1eSn−Si . (4.1)

Now given the environment, e−Sn
∑n−1

i=k Z̃i
n is for n > k a non-negative submartingale. Therefore Doob’s inequality

implies that for every ε ∈ (0,1)

P

(
max

k<m≤n
e−Sm

m−1∑
i=k

Z̃i
m ≥ ε

∣∣∣∣Π
)

≤ 1

ε

n−1∑
i=k

e−SnE
[
Z̃i

n|Π
]≤ 1

ε

∑
i≥k

ηi+1e−Si

and

P+
(

sup
m>k

e−Sm

m−1∑
i=k

Z̃i
m ≥ ε

)
≤ 1

ε
E+

[
1 ∧

∑
i≥k

ηi+1e−Si

]
.

From Lemma 3.1 it follows that

P+
(

sup
m>k

e−Sm

m−1∑
i=k

Z̃i
m ≥ ε

)
≤ ε,

if k is chosen large enough. Also e−SnZ̃i
n is for n ≥ i + 1 and a fixed environment a non-negative martingale, such

that for n → ∞
e−SnZ̃i

n → Wi P+-a.s.

These facts together with Sn → ∞ P+-a.s. (see [4], proof of Lemma 2.6) imply that

e−SnZ̃n → W+ P+-a.s.

for some random variable W+. Also W+ ≥∑
i≥0 Wi P+-a.s.

Thus it remains to show that
∑

i≥0 Wi > 0 P+-a.s. Given Π , the random variables Wi are independent, since they
arise from independent branching processes in the LPP-trest. In view of the second Borel–Cantelli Lemma it is thus
sufficient to prove∑

i≥0

P+(Wi > 0|Π)= ∞ P+-a.s.

Now we use the formula

P+(Wi > 0|Π)≥
( ∞∑

j=i

ηj+1e−(Sj −Si )

)−1

,

which is taken from the proof of Proposition 3.1 in [4] (a few lines after (3.7) therein). Because of Lemma 3.1 above
the right-hand side is strictly positive P+-a.s. Moreover there are random times 0 = ν(0) < ν(1) < · · · such that( ∞∑

j=ν(k)

ηj+1e−(Sj −Sν(k))

)−1

, k = 0,1, . . .
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is a stationary sequence of random variables, which is a consequence of Tanaka’s decomposition, see [29] and
Lemma 2.6 in [4]. From Birkhoff’s ergodic theorem it follows that

1

n

n∑
k=1

( ∞∑
j=ν(k)

ηj+1e−(Sj −Sν(k))

)−1

has a strictly positive limit P+-a.s. This implies our claim. �

We use the LPP-tree to approximate conditioned BPRE. Let us denote by T a branching tree in random environ-
ment Π . This is nothing else than the ordered rooted tree belonging to a BPRE in environment Π . Again let Zn denote
its number of individuals in generation n.

Theorem 4.2. Assume Assumptions A1 to A3. Let 0 ≤ rn < n be a sequence of natural numbers with rn → ∞. Let Yn

be uniformly bounded random variables of the form Yn = ϕ(Q1, . . . ,Qn−rn) and let Bn ⊂ T ′
n−rn

, n ≥ 1. If for some
� ≥ 0

E
[
Yn; [T̃]n−rn ∈ Bn|τn−m = n − m

]→ �

for all m ≥ 0, then

E
[
Yn;

[〈T 〉n
]
n−rn

∈ Bn|Zn > 0
]→ �.

Bn may be random, depending only on the environment Π .

For the proof we use the following theorem due to J. Geiger (see [20]). Let π = (q1, q2, . . .) be a fixed environment,
let Pπ (·) be the corresponding probabilities and let

Tn,π = (Tn,K0 . . .Kn)

denote a random trest of height n and let for i = 1, . . . , n

T ′
i = subtree within Tn right to the stem with root Ki−1,

T ′′
i = subtree within Tn left to the stem with root Ki−1,

Ri = size of the first generation of T ′
i ,

Li = size of the first generation of T ′′
i .

For Tn,π the following properties are required:

• Pπ (Ri = r,Li = l) = qi(r + l + 1)
Pπ (Zn>0|Zi=1)Pπ (Zn=0|Zi=1)l

Pπ (Zn>0|Zi−1=1)
.

• T ′
i , if decomposed at its first generation, consists of Ri subtrees τ ′

ij , j = 1, . . . ,Ri , which are branching trees within
the fixed environment (qi+1, qi+2, . . .).

• Similarly T ′′
i consists of Li subtrees τ ′′

ij , which are branching trees within the fixed environment (qi+1, qi+2, . . .)

conditioned to be extinct before generation n − i.
• All pairs (Ri,Li) and all subtrees τ ′

ij , τ ′′
ij are independent.

These properties determine the distribution of Tn,π up to possible offspring of Kn and thus the distribution of 〈Tn,π 〉n.

Theorem 4.3. For almost all π the conditional distribution of 〈T 〉n given Π = π,Zn > 0 is equal to the distribution
of 〈Tn,π 〉n.
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Geiger proved this result for a fixed environment q1 = q2 = · · · i.e. in the Galton–Watson case, see Proposition 2.1
in [20]. His proof carries over straightforward to a varying environment.

Proof of Theorem 4.2. For the trest T̃ we introduce the notations T̃ ′
i , T̃

′′
i , R̃i , L̃i , τ̃

′
ij , τ̃

′′
ij . They have the same meaning

as above T ′
i , T

′′
i ,Ri,Li, τ

′
ij , τ

′′
ij for the trest Tn,π . From the construction of T̃

Pπ (R̃i = r, L̃i = l) = qi(r + l + 1)e−Xi .

τ̃ ′
ij and τ ′

ij are equal in distribution, whereas τ̃ ′′
ij is no longer conditioned to be extinct in generation n − i, as this is

the case for τ ′′
ij .

In order to compare both trests we will couple them. We first consider the branching process in a fixed environment
π = (q1, q2, . . .) and again write the corresponding probabilities as Pπ (·). To begin with we estimate the total variation
distance between the distributions of (Ri,Li) and (R̃i , L̃i). Note that

Pπ (Zn > 0|Zi−1 = 1) =
∑
j≥1

Pπ (Zn > 0|Zi = j)Pπ (Zi = j |Zi−1 = 1)

≤
∑
j≥1

jPπ (Zn > 0|Zi = 1)Pπ (Zi = j |Zi−1 = 1)

= eXi Pπ (Zn > 0|Zi = 1)

such that for r, l,m ≥ 0 and i ≤ n − m

Pπ (R̃i = r, L̃i = l) − Pπ (Ri = r,Li = l)

≤ qi(r + l + 1)e−Xi
(
1 − Pπ (Zn = 0|Zi = 1)l

)
≤ qi(r + l + 1)e−Xi l

(
1 − Pπ (Zn = 0|Zi = 1)

)
≤ lqi(r + l + 1)e−Xi Pπ (Zn−m > 0|Zi = 1)

≤ lqi(r + l + 1)e−Xi eSn−m−Si .

Since the right-hand side is always non-negative, we may estimate the total variation distance as

1

2

∑
r,l≥0

∣∣Pπ (R̃i = r, L̃i = l) − Pπ (Ri = r,Li = l)
∣∣

=
∑
r,l≥0

(
Pπ (R̃i = r, L̃i = l) − Pπ (Ri = r,Li = l)

)+

≤ e−Xi eSn−m−Si
∑
r,l≥0

lqi(r + l + 1)

= e−Xi eSn−m−Si
1

2

∞∑
y=1

y(y − 1)qi(y) = 1

2
ηie

Sn−m−Si−1 .

Similarly we estimate the total variation distance between the distributions of τ ′′
ij and τ̃ ′′

ij . The second distribution
is equal to the first distribution conditioned to be extinct in generation n − i. This event can be expressed as {τ ′′

ij ∈ Bi}
with the set Bi of trees of height less than n − i, thus for some tree t

Pπ

(
τ ′′
ij = t

)− Pπ

(
τ̃ ′′
ij = t

) = Pπ

(
τ ′′
ij = t

)− Pπ

(
τ ′′
ij = t |τ ′′

ij ∈ Bi

)
≤ Pπ

(
τ ′′
ij = t

)
1Bc

i
(t).
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Again, since the right-hand side is non-negative for i ≤ n − m

1

2

∑
t

∣∣Pπ

(
τ ′′
ij = t

)− Pπ

(
τ̃ ′′
ij = t

)∣∣
≤ Pπ

(
τ ′′
ij ∈ Bc

i

)= Pπ (Zn > 0|Zi = 1) ≤ Pπ (Zn−m > 0|Zi = 1) ≤ eSn−m−Si .

Now we consider the following construction: Take couplings of the pairs (Ri,Li), (R̃i , L̃i) and of τ ′′
ij and τ̃ ′′

ij . Also

let τ ′
ij = τ̃ ′

ij . Put these components together to obtain (T ′
i , T

′′
i ) and (T̃ ′

i , T̃
′′
i ). If the couplings are all independent of

each other, then the resulting trests have the required distributional properties. We denote the resulting probabilities
again by Pπ . Thus

Pπ

((
T ′

i , T
′′
i

) 	= (
T̃ ′

i , T̃
′′
i

))
≤ Pπ

(
(Ri,Li) 	= (R̃i , L̃i)

)+
∑
r,l≥0

l∑
j=1

Pπ (R̃i = r, L̃i = l)Pπ

(
τ ′′
ij 	= τ̃ ′′

ij

)
.

For optimal couplings we may use the above estimates on the total variation distance and obtain for i ≤ n − m

Pπ

((
T ′

i , T
′′
i

) 	= (
T̃ ′

i , T̃
′′
i

)) ≤ 1

2
ηie

Sn−m−Si−1 +
∑
r,l≥0

lqi(r + l + 1)e−Xi eSn−m−Si

= ηie
Sn−m−Si−1 .

Altogether using Theorem 4.3 and the assumption that Bn depends only on Π , it follows for m < rn

∣∣Pπ

([〈T 〉n
]
n−rn

∈ Bn|Zn > 0
)− Pπ

([T̃]n−rn ∈ Bn

)∣∣≤ 1 ∧
n−rn∑
i=1

ηie
Sn−m−Si−1 .

Now from duality and from Lemmas 2.3, 3.1

E

[
1 ∧

n−rn∑
i=1

ηie
Sn−m−Si−1

∣∣∣∣τn−m = n − m

]

= E

[
1 ∧

n−m∑
i=rn−m

ηie
Si

∣∣∣∣Mn−m < 0

]
→ 0.

According to our assumptions E[YnPΠ([T̃]n−rn ∈ Bn)|τn−m = n − m] converges to �. Our estimates thus imply that

E
[
YnPΠ

([〈T 〉n
]
n−rn

∈ Bn|Zn > 0
)∣∣τn−m = n − m)

]→ �.

Thus we may apply Lemma 3.3 with YnPΠ(([〈T 〉n]n−rn ∈ Bn|Zn > 0) instead of Yn, ψ = 1 to obtain

E[YnPΠ([〈T 〉n]n−rn ∈ Bn|Zn > 0);Zn > 0]
γ nP(τn = n)

→ �p′′(N × N0).

Also from Lemma 3.3 with Yn = 1 and ψ = 1

P(Zn > 0) ∼ γ nP(τn = n)p′′(N × N0),

thus

E
[
YnP

([〈T 〉n
]
n−rn

∈ Bn|Π,Zn > 0
)∣∣Zn > 0)

]→ �.
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Now

E
[
YnP

([〈T 〉n
]
n−rn

∈ Bn|Π,Zn > 0
);Zn > 0

]
= E

[
Yn

P([〈T 〉n]n−rn ∈ Bn,Zn > 0|Π)

P(Zn > 0|Π)
;Zn > 0

]

= E
[
YnP

([〈T 〉n
]
n−rn

∈ Bn,Zn > 0|Π)]
= E

[
E
[
Yn;

[〈T 〉n
]
n−rn

∈ Bn,Zn > 0|Π]]
= E

[
Yn;

[〈T 〉n
]
n−rn

∈ Bn,Zn > 0
]
.

This gives the claim of Theorem 4.2. �

5. Proof of Theorem 1.4

Let again T̃ denote the LPP-trest. Recall that Z̃i
j is for i < j the number of the individuals in generation j other than

K̃j , which descent from K̃i but not from K̃i+1. For convenience we put Z̃i
j = 0 for i ≥ j .

Lemma 5.1. Let 0 < t < 1. Then for every ε > 0 there is a natural number a such that for any natural numbers m

and ς ∈ [τnt , nt]

P
( ∑

i:|i−τnt |≥a

Z̃i
ς

eSς−Sτnt
≥ ε

∣∣∣τn−m = n − m

)
≤ ε,

if n is sufficiently large (depending on ε, a and m). ς may be random, depending only on the random environment Π .

Proof. For 0 < ε ≤ 1 from Markov inequality and (4.1)

εP
( ∑

|i−τnt |≥a

Z̃i
ς

eSς−Sτnt
≥ ε; τn−m = n − m

)

≤ E
[

1 ∧
∑

i≤ς,|i−τnt |≥a

ηi+1eSτnt −Si ; τn−m = n − m

]
.

Next we decompose with the value of τnt to obtain for m ≤ (1 − t)n

εP
( ∑

|i−τnt |≥a

Z̃i
ς

eSς−Sτnt
≥ ε; τn−m = n − m

)

≤
∑
j≤nt

E
[

1 ∧
∑

i≤ς,|i−j |≥a

ηi+1eSj −Si ; τj = j,Lj,nt ≥ 0

]

× P
(
τ(1−t)n−m = ⌊

(1 − t)n
⌋− m

)
.

We split the expectation:

∑
j≤nt

E
[

1 ∧
∑

i≤ς,|i−j |≥a

ηi+1eSj −Si ; τj = j,Lj,nt ≥ 0

]

=
∑
j≤nt

E

[
1 ∧

j−a∑
i=0

ηi+1eSj −Si ; τj = j

]
P(Lnt−j ≥ 0) +

∑
j≤nt

P(τj = j)E

[
1 ∧

ς∑
i=j+a

ηi+1eSj −Si ;Lj,nt ≥ 0

]
.
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Duality yields

∑
j≤nt

E
[

1 ∧
∑

i≤ς,|i−j |≥a

ηi+1eSj −Si ; τj = j,Lj,nt ≥ 0

]

≤
∑

a≤j≤nt

E

[
1 ∧

j∑
i=a

ηie
Si ;Mj < 0

]
P(Lnt−j ≥ 0)

+
∑

a≤k≤nt

P
(
τnt−k = �nt
 − k

)
E

[
1 ∧

k∑
i=a

ηi+1e−Si ;Lk ≥ 0

]
.

From Lemmas 2.3, 3.1 we may choose a so large that

E

[
1 ∧

j∑
i=a

ηie
Si ;Mj < 0

]
≤ δP(Mj < 0)

E

[
1 ∧

k∑
i=a

ηi+1e−Si ;Lk ≥ 0

]
≤ δP(Lk ≥ 0)

for all j, k > a and given δ > 0. It follows from duality

∑
j≤nt

E
[

1 ∧
∑

i≤ς,|i−j |≥a

ηi+1eSj −Si ; τj = j,Lj,nt ≥ 0

]

≤ δ
∑

a≤j≤nt

P(τj = j)P(Lnt−j ≥ 0)

+ δ
∑

a≤k≤nt

P
(
τnt−k = �nt
 − k

)
P(Lk ≥ 0)

≤ 2δ

and

P
( ∑

|i−τnt |≥a

Z̃i
ς

eSς−Sτnt
≥ ε; τn = n

)

≤ 2δ

ε
P
(
τ(1−t)n−m = ⌊

(1 − t)n
⌋− m

)
.

Since P(τn = n) is regularly varying, the right-hand side is bounded by the term εP(τn = n), if δ is chosen small
enough. This gives the claim. �

We now come to the proof of the first part of Theorem 1.4. Let σi,n as in (2.3) and define μn(i) as the smallest
natural number j between 1 and i such that τnti = σj,n,

μn(i) = min{j ≤ i: τnti = σj,n}. (5.1)

Again let Z̃j be the number of individuals in generation j of the LPP-trest T̃, thus

Z̃j = 1 +
j−1∑
k=0

Z̃k
j .
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Therefore, given ε > 0 in view of the preceding lemma with ς = τnt there is a natural number a such that given
τn−m = n − m the probability is at least 1 − ε that the event

Z̃τnti
= 1 +

∑
|k−τnti

|≤a

Z̃k
τnti

= 1 +
σμn(i),n∑

k=σμn(i),n−a

Z̃k
σμn(i),n

holds for all i = 1, . . . , r . Now note that given the environment Π the distribution of

1 +
σj,n∑

k=σj,n−a

Z̃k
σj,n

only depends on (Qσj,n−a, . . . ,Qσj,n
). Lemma 2.7 says that given τn−m = n − m these random vectors are asymptot-

ically i.i.d. Also this lemma gives asymptotic independence of these random vectors from

1

an

(Sσ1,n
, Snt1, . . . , Sσr,n , Sntr ),

which in turn determines μn(1), . . . ,μn(r). Finally in view of Lemma 2.5 μn(1), . . . ,μn(r) converges in distribution
to μ(1), . . . ,μ(r).

These observations hold for every ε > 0. Therefore we may summarize our discussion as follows: For all m ≥ 1

(
(Z̃τnt1

, . . . , Z̃τntr
)|τn−m = n − m

) d→ (Vμ(1), . . . , Vμ(r)),

where the right-hand term has just the properties as given in Theorem 1.4. Now Theorem 4.2 gives the claim.
The proof of the second part of Theorem 1.4 is prepared by the following lemma. Let for fixed a

Ẑa,k =
∑

i:|i−τnt |≤a

Z̃i
k

and

αa,n = eSτnt −Snt Ẑa,nt , βa,n = eSτnt −Sτnt +a Ẑa,τnt+a.

Lemma 5.2. Let m ≥ 1, ε > 0 and 0 < t < 1. Then, if a is sufficiently large

lim sup
n→∞

P
(|αa,n − βa,n| > ε

∣∣τn−m = n − m
)≤ ε.

Proof. Because of Markov inequality and (4.1)

P(βa,n > d|τn−m = n − m)

≤ P
(
eSτnt −Sτnt +a E[Ẑa,τnt+a|Π ] >

√
d
∣∣τn−m = n − m

)+ 1√
d

≤ P
( ∑

i:|i−τnt |≤a

ηi+1eSτnt −Si >
√

d

∣∣∣τn−m = n − m

)
+ 1√

d
.

From Lemma 2.7 (with r = 1, thus σ1,n = τnt ) it follows that the sum converges in distribution for n → ∞ and

lim sup
n→∞

P(βa,n > d|τn−m = n − m)

≤ P−
(∑

i≥1

ηie
Si ≥ √

d

)
+ P+

(∑
i≥0

ηi+1e−Si ≥ √
d

)
+ 1√

d
.
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Therefore from Lemma 3.1 it results that there is a d < ∞ such that for all a > 0

lim sup
n→∞

P(βa,n > d|τn−m = n − m) < ε/2.

Moreover from Lemma 2.5 t − 1
n
τnt converges in distribution to a strictly positive random variable, thus P(τnt + a ≥

nt |τn−m = n − m) → 0 for n → ∞. Therefore for n large enough,

P
(|βa,n − αa,n| > ε

∣∣τn−m = n − m
)

(5.2)

≤ ε

2
+ P

(|αa,n − βa,n| > ε,βa,n ≤ d, τnt + a ≤ nt
∣∣τn−m = n − m

)
. (5.3)

Now, given Π , Ẑa,τnt+a and τnt + a ≤ nt , the process Ẑa,k , k ≥ τnt + a is a branching process in varying environ-
ment. Therefore E[αa,n|Π, Ẑa,τnt+a] = βa,n a.s. Also the branching property yields

Var(Zn|Z0 = z,Π)

E[Zn|Z0 = 1,Π]2
= z

(
e−Sn +

n−1∑
i=0

ηi+1e−Si − 1

)
, (5.4)

therefore on τnt + a ≤ nt

ε2P
(|βa,n − αa,n| > ε

∣∣Π, Ẑa,τnt+a

) ≤ E
[
(βa,n − αa,n)

2|Π, Ẑa,τnt+a

]

≤ Ẑa,τnt+ae2(Sτnt −Sτnt +a)

(
e−(Snt−Sτnt +a) +

�nt
∑
i=τnt+a

ηi+1e−(Si−Sτnt +a)

)

= βa,n

(
e−(Snt−Sτnt ) +

�nt
∑
i=τnt+a

ηi+1e−(Si−Sτnt )

)
.

Inserting this estimate into (5.2), we obtain

P
(|βa,n − αa,n| > ε; τn−m = n − m

)
≤ ε

2
P(τn−m = n − m)

+ d

ε2
E

[
1 ∧

(
e−(Snt−Sτnt ) +

�nt
∑
i=τnt+a

ηi+1e−(Si−Sτnt )

)
; τnt + a ≤ nt, τn−m = n − m

]

≤ ε

2
P(τn−m = n − m)

+ d

ε2

∑
j≤nt−a

P(τnt = j)E

[
1 ∧

(
e−Snt−j +

�nt
−j∑
i=a

ηi+1e−Si

)
;Lnt−j ≥ 0

]
P
(
τn(1−t)−m = ⌊

n(1 − t)
⌋− m

)
.

From Lemmas 2.1, 2.3, 3.1 together with the fact that P(τn = n) is regularly varying our claim follows for a

sufficiently large. �

We are now ready to finish the proof of Theorem 1.4. We first treat the case r = 1. From Z̃nt = 1 + Ẑa,nt +∑
i:|i−τnt |>a Z̃i

nt

P
(∣∣eSτnt −Snt Z̃nt − βa,n

∣∣≥ 3ε
∣∣τn−m = n − m

)
≤ P

(
eSτnt −Snt ≥ ε|τn−m = n − m

)
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+ P
(|αa,n − βa,n| ≥ ε

∣∣τn−m = n − m
)

+ P
(

eSτnt −Snt
∑

i:|i−τnt |>a

Z̃i
nt ≥ ε

∣∣∣τn−m = n − m

)
.

From Lemma 2.5 it results that

P
(
eSτnt −Snt ≥ ε|τn−m = n − m

)= P
(

Sτnt − Snt

an

≥ log ε

an

∣∣∣τn−m = n − m

)
→ 0.

Together with Lemmas 5.1, 5.2 it follows that for all ε > 0 there is a natural number a such that

P
(∣∣eSτnt −Snt Z̃nt − βa,n

∣∣≥ 3ε|τn−m = n − m
)≤ 3ε

for large n.
Moreover from Lemma 2.7 we see that βa,n, conditioned on τn−m = n − m, converges in distribution for every

a. This implies that eSτnt −Snt Z̃nt conditioned on τn−m = n − m converges in distribution. Moreover from Lemma 4.1
there is a δ > 0 such that

P+
(

e−Sa
∑

1≤i≤a

Z̃i
a < δ

)
< ε,

if a is sufficiently large. Then from Lemma 2.7

P(βa,n < δ|τn−m = n − m) < ε,

if n is sufficiently large. Therefore the limiting distribution of eSτnt −Snt Z̃nt conditioned on τn−m = n − m has no atom
in zero. An application of Theorem 4.2 now gives the claim for r = 1.

Finally for r > 1 we let

βa,n,i = eSσi,n
−Sσi,n+a Ẑa,σi,n+a, i = 1, . . . , r.

From (5.1) and our considerations above we know that for every i ≤ r

P
(∣∣eSτnti

−Snti Z̃nti − βa,n,μn(i)

∣∣≥ ε for some i ≤ r|τn−m = n − m
)≤ ε

r

and the rest of the theorem follows by means of Lemma 2.7 and Theorem 4.2.
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