2,553 research outputs found

    Reaction and break-up cross sections of 11Li at 0.8 and 0.28 GeV/u

    Get PDF
    In this paper we calculate reaction and breakup cross sections for the two- neutron halo nucleus of 11^{11}Li using the optical limit of Glauber theory. Calculations are presented and compared to experimental data at 0.8 and 0.28 GeV/u on a series of targets. The 11^{11}Li nucleus is described as a three-body system, a core plus two neutrons, with a phenomenological neutron-core potential and a density dependent neutron-neutron interaction of zero range. Three different wave functions are constructed which have different (2s1/2)2(2s_{1/2})^2 and (1p1/2)2(1p_{1/2})^2 two-neutron components but correspond to the same binding energy close to the experimental value. We show that the agreement with all the experimental observables is achieved only if the 11Li wave function contains about 30% of (2s1/2)2(2s_{1/2})^2 configuration

    Non-minimal Einstein-Yang-Mills-Higgs theory: Associated, color and color-acoustic metrics for the Wu-Yang monopole model

    Full text link
    We discuss a non-minimal Einstein-Yang-Mills-Higgs model with uniaxial anisotropy in the group space associated with the Higgs field. We apply this theory to the problem of propagation of color and color-acoustic waves in the gravitational background related to the non-minimal regular Wu-Yang monopole.Comment: 14 pages, no figure

    Elastic Nd scattering at intermediate energies as a tool for probing the short-range deuteron structure

    Full text link
    A calculation of the deuteron polarization observables AydA^d_y, AyyA_{yy}, AxxA_{xx}, AxzA_{xz} and the differential cross-section for elastic nucleon-deuteron scattering at incident deuteron energies 270 and 880 MeV in lab is presented. A comparison of the calculations with two different deuteron wave-functions derived from the Bonn-CD NNNN-potential model and the dressed bag quark model is carried out. A model-independent approach, based on an optical potential framework, is used in which a nucleon-nucleon TT-matrix is assumed to be local and taken on the energy shell, but still depends on the internal nucleon momentum in a deuteron.Comment: 15 pages, 4 figure

    Stacking Entropy of Hard Sphere Crystals

    Full text link
    Classical hard spheres crystallize at equilibrium at high enough density. Crystals made up of stackings of 2-dimensional hexagonal close-packed layers (e.g. fcc, hcp, etc.) differ in entropy by only about 103kB10^{-3}k_B per sphere (all configurations are degenerate in energy). To readily resolve and study these small entropy differences, we have implemented two different multicanonical Monte Carlo algorithms that allow direct equilibration between crystals with different stacking sequences. Recent work had demonstrated that the fcc stacking has higher entropy than the hcp stacking. We have studied other stackings to demonstrate that the fcc stacking does indeed have the highest entropy of ALL possible stackings. The entropic interactions we could detect involve three, four and (although with less statistical certainty) five consecutive layers of spheres. These interlayer entropic interactions fall off in strength with increasing distance, as expected; this fall-off appears to be much slower near the melting density than at the maximum (close-packing) density. At maximum density the entropy difference between fcc and hcp stackings is 0.00115+/0.00004kB0.00115 +/- 0.00004 k_B per sphere, which is roughly 30% higher than the same quantity measured near the melting transition.Comment: 15 page

    First Penning-trap mass measurement in the millisecond half-life range: the exotic halo nucleus 11Li

    Full text link
    In this letter, we report a new mass for 11^{11}Li using the trapping experiment TITAN at TRIUMF's ISAC facility. This is by far the shortest-lived nuclide, t1/2=8.8mst_{1/2} = 8.8 \rm{ms}, for which a mass measurement has ever been performed with a Penning trap. Combined with our mass measurements of 8,9^{8,9}Li we derive a new two-neutron separation energy of 369.15(65) keV: a factor of seven more precise than the best previous value. This new value is a critical ingredient for the determination of the halo charge radius from isotope-shift measurements. We also report results from state-of-the-art atomic-physics calculations using the new mass and extract a new charge radius for 11^{11}Li. This result is a remarkable confluence of nuclear and atomic physics.Comment: Formatted for submission to PR

    Optical Aharonov-Bohm effect: an inverse hyperbolic problems approach

    Full text link
    We describe the general setting for the optical Aharonov-Bohm effect based on the inverse problem of the identification of the coefficients of the governing hyperbolic equation by the boundary measurements. We interpret the inverse problem result as a possibility in principle to detect the optical Aharonov-Bohm effect by the boundary measurements.Comment: 34 pages. Minor changes, references adde

    Soap Froths and Crystal Structures

    Full text link
    We propose a physical mechanism to explain the crystal symmetries found in macromolecular and supramolecular micellar materials. We argue that the packing entropy of the hard micellar cores is frustrated by the entropic interaction of their brush-like coronas. The latter interaction is treated as a surface effect between neighboring Voronoi cells. The observed crystal structures correspond to the Kelvin and Weaire-Phelan minimal foams. We show that these structures are stable for reasonable areal entropy densities.Comment: 4 pages, RevTeX, 2 included eps figure

    Optics of Nonuniformly Moving Media

    Full text link
    A moving dielectric appears to light as an effective gravitational field. At low flow velocities the dielectric acts on light in the same way as a magnetic field acts on a charged matter wave. We develop in detail the geometrical optics of moving dispersionless media. We derive a Hamiltonian and a Lagrangian to describe ray propagation. We elucidate how the gravitational and the magnetic model of light propagation are related to each other. Finally, we study light propagation around a vortex flow. The vortex shows an optical Aharonov--Bohm effect at large distances from the core, and, at shorter ranges, the vortex may resemble an optical black hole.Comment: Physical Review A (submitted

    Dynamic CpG methylation delineates subregions within super-enhancers selectively decommissioned at the exit from naive pluripotency

    Get PDF
    Clusters of enhancers, referred as to super-enhancers (SEs), control the expression of cell identity genes. The organisation of these clusters, and how they are remodelled upon developmental transitions remain poorly understood. Here, we report the existence of two types of enhancer units within SEs typified by distinctive CpG methylation dynamics in embryonic stem cells (ESCs). We find that these units are either prone for decommissioning or remain constitutively active in epiblast stem cells (EpiSCs), as further established in the peri-implantation epiblast in vivo. Mechanistically, we show a pivotal role for ESRRB in regulating the activity of ESC-specific enhancer units and propose that the developmentally regulated silencing of ESRRB triggers the selective inactivation of these units within SEs. Our study provides insights into the molecular events that follow the loss of ESRRB binding, and offers a mechanism by which the naive pluripotency transcriptional programme can be partially reset upon embryo implantation
    corecore