11,532 research outputs found

    Towards Developing an Online Social Media-based Mobile Learning System

    Get PDF
    The advancement of Information and Communication Technology (ICT) and the Internet revolution gave rise to the several learning technologies on the web and mobile platform. During the last decade, the social media network became available for users to socialise and collaborate among peer group. Hence, The integration of e-learning and social media using mobile device as access point is to allow for learning and collaboration anytime, anywhere. This study seeks to provide learning on the social network platform for users to view the application on a mobile device and also foster collaboration among scholars. The system was developed using an open source Content Management System (CMS) Wordpress and Buddypress running on a WAMP or XAMPP server. MySQL was used as database. The usability of the System on the different mobile devices used was evaluated by identifying the usability attributes; designing a questionnaire based on those attributes and then analyzing the results with Statistical Package for Social Science (SPSS). The results showed that the learning system had a good usability score on mobile device

    Tip-gating Effect in Scanning Impedance Microscopy of Nanoelectronic Devices

    Full text link
    Electronic transport in semiconducting single-wall carbon nanotubes is studied by combined scanning gate microscopy and scanning impedance microscopy (SIM). Depending on the probe potential, SIM can be performed in both invasive and non-invasive mode. High-resolution imaging of the defects is achieved when the probe acts as a local gate and simultaneously an electrostatic probe of local potential. A class of weak defects becomes observable even if they are located in the vicinity of strong defects. The imaging mechanism of tip-gating scanning impedance microscopy is discussed.Comment: 11 pages, 3 figures, to be published in Appl. Phys. Let

    Carbon nanotubes as a tip calibration standard for electrostatic scanning probe microscopies

    Full text link
    Scanning Surface Potential Microscopy (SSPM) is one of the most widely used techniques for the characterization of electrical properties at small dimensions. Applicability of SSPM and related electrostatic scanning probe microscopies for imaging of potential distributions in active micro- and nanoelectronic devices requires quantitative knowledge of tip surface contrast transfer. Here we demonstrate the utility of carbon-nanotube-based circuits to characterize geometric properties of the tip in the electrostatic scanning probe microscopies (SPM). Based on experimental observations, an analytical form for the differential tip-surface capacitance is obtained.Comment: 14 pages, 4 figure

    Fast hyperbolic Radon transform represented as convolutions in log-polar coordinates

    Full text link
    The hyperbolic Radon transform is a commonly used tool in seismic processing, for instance in seismic velocity analysis, data interpolation and for multiple removal. A direct implementation by summation of traces with different moveouts is computationally expensive for large data sets. In this paper we present a new method for fast computation of the hyperbolic Radon transforms. It is based on using a log-polar sampling with which the main computational parts reduce to computing convolutions. This allows for fast implementations by means of FFT. In addition to the FFT operations, interpolation procedures are required for switching between coordinates in the time-offset; Radon; and log-polar domains. Graphical Processor Units (GPUs) are suitable to use as a computational platform for this purpose, due to the hardware supported interpolation routines as well as optimized routines for FFT. Performance tests show large speed-ups of the proposed algorithm. Hence, it is suitable to use in iterative methods, and we provide examples for data interpolation and multiple removal using this approach.Comment: 21 pages, 10 figures, 2 table

    Detecting Spin-Polarized Currents in Ballistic Nanostructures

    Get PDF
    We demonstrate a mesoscopic spin polarizer/analyzer system that allows the spin polarization of current from a quantum point contact in an in-plane magnetic field to be measured. A transverse focusing geometry is used to couple current from an emitter point contact into a collector point contact. At large in-plane fields, with the point contacts biased to transmit only a single spin (g < e^2/h), the voltage across the collector depends on the spin polarization of the current incident on it. Spin polarizations of greater than 80% are found for both emitter and collector at 300mK and 7T in-plane field.Comment: related papers at http://marcuslab.harvard.ed

    First Order Calculation of the Inclusive Cross Section pp to ZZ by Graviton Exchange in Large Extra Dimensions

    Full text link
    We calculate the inclusive cross section of double Z-boson production within large extra dimensions at the Large Hadron Collider (LHC). Using perturbatively quantized gravity in the ADD model we perform a first order calculation of the graviton mediated contribution to the pp to ZZ cross section. At low energies (e.g. Tevatron) this additional contribution is very small, making it virtually unobservable, for a fundamental mass scale above 2500 GeV. At LHC energies however, the calculation indicates that the ZZ-production rate within the ADD model should differ significantly from the Standard Model if the new fundamental mass scale would be below 15000 GeV. A comparison with the observed production rate at the LHC might therefore provide direct hints on the number and structure of the extra dimensions.Comment: 7 pages, 7 figures, accepted for publication in Phys. Rev.

    Expected and unexpected products of reactions of 2-hydrazinylbenzothiazole with 3-nitrobenzenesulfonyl chloride in different solvents

    Get PDF
    Acknowledgements We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collections. Funding information MVNdS and JLW thank CNPq (Brazil) for financial support.Peer reviewedPublisher PD

    Numerical approach to the dynamical Casimir effect

    Full text link
    The dynamical Casimir effect for a massless scalar field in 1+1-dimensions is studied numerically by solving a system of coupled first-order differential equations. The number of scalar particles created from vacuum is given by the solutions to this system which can be found by means of standard numerics. The formalism already used in a former work is derived in detail and is applied to resonant as well as off-resonant cavity oscillations.Comment: 15 pages, 4 figures, accepted for publication in J. Phys. A (special issue: Proceedings of QFEXT05, Barcelona, Sept. 5-9, 2005
    corecore