98 research outputs found

    The effectiveness of problem solving therapy for stroke patients: Study protocol for a pragmatic randomized controlled trial

    Get PDF
    Background: Coping style is one of the determinants of health-related quality of life after stroke. Stroke patients make less use of active problem-oriented coping styles than other brain damaged patients. Coping styles can be influenced by means of intervention. The primary aim of this study is to investigate if Problem Solving Therapy is an effective group intervention for improving coping style and health-related quality of life in stroke patients. The secondary aim is to determine the effect of Problem Solving Therapy on depression, social participation, health care consumption, and to determine the cost-effectiveness of the intervention.Methods/design: We strive to include 200 stroke patients in the outpatient phase of rehabilitation treatment, using a multicenter pragmatic randomized controlled trial with one year follow-up. Patients in the intervention group will receive Problem Solving Therapy in addition to the standard rehabilitation program. The intervention will be provided in an open group design, with a continuous flow of patients. Primary outcome measures are coping style and health-related quality of life. Secondary outcome measures are depression, social participation, health care consumption, and the cost-effectiveness of the intervention.Discussion: We designed our study as close to the implementation in practice as possible, using a pragmatic randomized trial and open group design, to represent a realistic estimate of the effectiveness of the intervention. If effective, Problem Solving Therapy is an inexpensive, deliverable and sustainable group intervention for stroke rehabilitation programs.Trial registration: Nederlands Trial Register, NTR2509

    The P2X1 receptor and platelet function

    Get PDF
    Extracellular nucleotides are ubiquitous signalling molecules, acting via the P2 class of surface receptors. Platelets express three P2 receptor subtypes, ADP-dependent P2Y1 and P2Y12 G-protein-coupled receptors and the ATP-gated P2X1 non-selective cation channel. Platelet P2X1 receptors can generate significant increases in intracellular Ca2+, leading to shape change, movement of secretory granules and low levels of αIIbβ3 integrin activation. P2X1 can also synergise with several other receptors to amplify signalling and functional events in the platelet. In particular, activation of P2X1 receptors by ATP released from dense granules amplifies the aggregation responses to low levels of the major agonists, collagen and thrombin. In vivo studies using transgenic murine models show that P2X1 receptors amplify localised thrombosis following damage of small arteries and arterioles and also contribute to thromboembolism induced by intravenous co-injection of collagen and adrenaline. In vitro, under flow conditions, P2X1 receptors contribute more to aggregate formation on collagen-coated surfaces as the shear rate is increased, which may explain their greater contribution to localised thrombosis in arterioles compared to venules within in vivo models. Since shear increases substantially near sites of stenosis, anti-P2X1 therapy represents a potential means of reducing thrombotic events at atherosclerotic plaques

    Strategic options development and analysis

    Get PDF
    Strategic Options Development and Analysis (SODA) enables a group or individual to construct a graphical representation (map) or a problematic situation, and thus explore options and their ramifications with respect to a complex system of goals or objectives. In addition the approach aims to help groups arrive at a negotiated agreement about how to act to resolve the situation. It is based upon the use of causal mapping – a formally constructed means-ends network. Because the map has been constructed using the natural language of the problem owners it becomes a model of the situation that is ‘owned’ by those who define the problem. The use of formalities for the construction of the model makes it amenable to a range of analyses encouraging reflection and a deeper understanding. These analyses can be used in a ‘rough and ready’ manner by visual inspection or through the use of specialist causal mapping software. Each of the analyses helps a group or individual discover important features of the problem situation. And these features facilitate agreeing a good solution. The SODA process is aimed at helping a group learn about the situation they face before they reach agreements. Most significantly the exploration through the causal map leads to a higher probability of more creative solutions and promotes solutions that are more likely to be implemented because the problem construction process is more likely to include richer social dimensions about the blockages to action and organizational change. The basic theories that inform SODA derive from cognitive psychology and social negotiation, where the model acts as a continuously changing representation of the problematic situation (a transitional object) – changing as the views of a person or group shift through learning and exploration. This chapter jointly written by two leading practitioner academics and the original developers of SODA, Colin Eden and Fran Ackermann, describe the SODA approach as it is applied in practice
    • …
    corecore