2,214 research outputs found

    Neural network prediction of geomagnetic activity: a method using local H\"{o}lder exponents

    Full text link
    Local scaling and singularity properties of solar wind and geomagnetic time series were analysed using H\"{o}lder exponents α\alpha. It was shown that in analysed cases due to multifractality of fluctuations α\alpha changes from point to point. We argued there exists a peculiar interplay between regularity / irregularity and amplitude characteristics of fluctuations which could be exploited for improvement of predictions of geomagnetic activity. To this end layered backpropagation artificial neural network model with feedback connection was used for the study of the solar wind - magnetosphere coupling and prediction of geomagnetic DstD_{st} index. The solar wind input was taken from principal component analysis of interplanetary magnetic field, proton density and bulk velocity. Superior network performance was achieved in cases when the information on local H\"{o}lder exponents was added to the input layer.Comment: 17 pages, 7 figure

    Magnetic Fluctuations and Turbulence in the Venus Magnetosheath and Wake

    Full text link
    Recent research has shown that distinct physical regions in the Venusian induced magnetosphere are recognizable from the variations of strength and of wave/fluctuation activity of the magnetic field. In this paper the statistical properties of magnetic fluctuations are investigated in the Venusian magnetosheath, terminator, and wake regions. The latter two regions were not visited by previous missions. We found 1/f fluctuations in the magnetosheath, large-scale structures near the terminator and more developed turbulence further downstream in the wake. Location independent short-tailed non-Gaussian statistics was observed.Comment: 16 pages, 4 figure

    Kelvin-Helmholtz instability of twisted magnetic flux tubes in the solar wind

    Full text link
    Solar wind plasma is supposed to be structured in magnetic flux tubes carried from the solar surface. Tangential velocity discontinuity near the boundaries of individual tubes may result in Kelvin-Helmholtz instability, which may contribute into the solar wind turbulence. While the axial magnetic field may stabilize the instability, a small twist in the magnetic field may allow to sub-Alfvenic motions to be unstable. We aim to study the Kelvin-Helmholtz instability of twisted magnetic flux tube in the solar wind with different configurations of external magnetic field. We use magnetohydrodynamic equations in the cylindrical geometry and derive the dispersion equations governing the dynamics of twisted magnetic flux tube moving along its axis in the cases of untwisted and twisted external fields. Then we solve the dispersion equations analytically and numerically and found thresholds for Kelvin-Helmholtz instability in both cases of external field. Both analytical and numerical solutions show that the Kelvin-Helmholtz instability is suppressed in the twisted tube by external axial magnetic field for sub-Alfvenic motions. However, even small twist in the external magnetic field allows the Kelvin-Helmholtz instability to be developed for any sub-Alfvenic motions. The unstable harmonics correspond to vortices with high azimuthal mode numbers, which are carried by the flow. Twisted magnetic flux tubes can be unstable to Kelvin-Helmholtz instability when they move with small speed relative to main solar wind stream, then the Kelvin-Helmholtz vortices may significantly contribute into the solar wind turbulence.Comment: 8 pages, 3 figures, accepted in A&
    • …
    corecore