31 research outputs found

    Towards Packaging Unit Detection for Automated Palletizing Tasks

    Full text link
    For various automated palletizing tasks, the detection of packaging units is a crucial step preceding the actual handling of the packaging units by an industrial robot. We propose an approach to this challenging problem that is fully trained on synthetically generated data and can be robustly applied to arbitrary real world packaging units without further training or setup effort. The proposed approach is able to handle sparse and low quality sensor data, can exploit prior knowledge if available and generalizes well to a wide range of products and application scenarios. To demonstrate the practical use of our approach, we conduct an extensive evaluation on real-world data with a wide range of different retail products. Further, we integrated our approach in a lab demonstrator and a commercial solution will be marketed through an industrial partner

    Development and testing of a pyro-driven launcher for harpoon-based comet sample acquisition

    Get PDF
    The CORSAIR (COmet Rendezvous, Sample Acquisition, Investigation, and Return) mission is a proposal for the fourth NASA New Frontiers program. It belongs to the Comet Surface Sample Return mission theme which focuses on acquiring and returning to Earth a macroscopic sample from the surface of a comet nucleus. CORSAIR uses a harpoon-based Sample Acquisition System (SAS) with the spacecraft hovering several meters above the comet surface. This stand-off strategy overcomes disadvantages of systems using drills or shovels. Since comets are low gravity objects, these techniques would require anchoring before sampling, which is not necessary here. Moreover, the harpoon-based system allows for acquiring several samples from different locations on the comet maximizing the scientifc output of the mission. Each SAS assembly consists of a pyro-driven launcher, a Sample Acquisition and Retrieval Projectile (SARP) and a retraction system using a deployable composite boom structure. In order to collect enough cometary material, the launcher has to provide the required kinetic energy to the SARP. Due to high energy densities, pyrotechnically actuated devices ultimately reduce the overall system mass and dimensions. Here, an overview of the development, design and testing of the launcher is given. Furthermore, the launcher theory is introduced explaining the entire reaction chain: initiation -> gas dynamics -> SARP motion

    Decline in the number of patients with meningitis in German hospitals during the COVID-19 pandemic

    Get PDF
    BACKGROUND AND OBJECTIVES: In 2020, a wide range of hygiene measures was implemented to mitigate infections caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In consequence, pulmonary infections due to other respiratory pathogens also decreased. Here, we evaluated the number of bacterial and viral meningitis and encephalitis cases during the coronavirus disease 2019 (COVID-19) pandemic. METHODS: In a multicentre retrospective analysis of data from January 2016 until December 2020, numbers of patients diagnosed with bacterial meningitis and other types of CNS infections (such as viral meningitis and encephalitis) at 26 German hospitals were studied. Furthermore, the number of common meningitis-preceding ear-nose-throat infections (sinusitis, mastoiditis and otitis media) was evaluated. RESULTS: Compared to the previous years, the total number of patients diagnosed with pneumococcal meningitis was reduced (n = 64 patients/year in 2020 vs. n = 87 to 120 patients/year between 2016 and 2019, all p < 0.05). Additionally, the total number of patients diagnosed with otolaryngological infections was significantly lower (n = 1181 patients/year in 2020 vs. n = 1525 to 1754 patients/year between 2016 and 2019, all p < 0.001). We also observed a decline in viral meningitis and especially enterovirus meningitis (n = 25 patients/year in 2020 vs. n = 97 to 181 patients/year between 2016 and 2019, all p < 0.001). DISCUSSION: This multicentre retrospective analysis demonstrates a decline in the number of patients treated for viral and pneumococcal meningitis as well as otolaryngological infections in 2020 compared to previous years. Since the latter often precedes pneumococcal meningitis, this may point to the significance of the direct spread of pneumococci from an otolaryngological focus such as mastoiditis to the brain as one important pathophysiological route in the development of pneumococcal meningitis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00415-022-11034-w

    Dynamic Acoustic Control of Individual Optically Active Quantum Dot-like Emission Centers in Heterostructure Nanowires

    Get PDF
    We probe and control the optical properties of emission centers forming in radial het- erostructure GaAs-Al0.3Ga0.7As nanowires and show that these emitters, located in Al0.3Ga0.7As layers, can exhibit quantum-dot like characteristics. We employ a radio frequency surface acoustic wave to dynamically control their emission energy and occupancy state on a nanosec- ond timescale. In the spectral oscillations we identify unambiguous signatures arising from both the mechanical and electrical component of the surface acoustic wave. In addition, differ- ent emission lines of a single quantum dot exhibit pronounced anti-correlated intensity oscilla- tions during the acoustic cycle. These arise from a dynamically triggered carrier extraction out of the quantum dot to a continuum in the radial heterostructure. Using finite element modeling and Wentzel-Kramers-Brillouin theory we identify quantum tunneling as the underlying mech- anism. These simulation results quantitatively reproduce the observed switching and show that in our systems these quantum dots are spatially separated from the continuum by > 10.5 nm.Comment: This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Nano Letters, copyright \c{copyright} American Chemical Society after peer review. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/nl404043

    Outcome after polyaxial locking plate osteosynthesis in proximal tibia fractures: a prospective clinical trial

    No full text
    Background!#!The aim of this study was to evaluate the clinical and/or radiologic outcome using different polyaxial locking plates for the treatment of proximal tibia fractures, the Non-Contact-Briding plate (NCB-PT®) by Zimmer or the Variable Angle Locking Compression Plate (VA-LCP®) by Synthes.!##!Methods!#!This study enrolled 28 patients with proximal tibia fractures (AO/ OTA 41 B-C) and indication for locking plate osteosynthesis. All patients were treated with a polyaxial locking plate system. Depending on the fracture morphology, patients were either treated with a NCB-PT® or VA-LCP®. The implant was chosen according to the surgeon's experience and preference, in case of a higher degree of comminution the tendency was observed to use the NCB-PT® plate. After a time interval of 12 months postoperative we conducted clinical (e.g. range of motion, the Rasmussen score) and radiological (e.g. primary/secondary loss of reduction) follow-ups.!##!Results!#!Patients provided with the NCB-PT® (9 patients) showed longer operation time, use of longer implants, longer interval from injury to surgery and lower clinical scores after the 12 months follow-up compared with the VA-LCP® group (19 patients). Interestingly, the results showed no significant differences regarding the clinical and radiologic outcome.!##!Conclusions!#!The small number of patients as well as the heterogeneity of fractures constitute a limitation of this study. Nevertheless, the differentiated use of implants is associated with comparable clinical and radiological outcomes. This trial emphasizes the need for further prospective randomised trials with higher patient numbers.!##!Trial registration!#!Retrospectively registered 21.12.2020. Registration number NCT04680247

    Does implant removal of superior clavicle plate osteosynthesis affect the functional outcome: a prospective trial

    No full text
    Background!#!Elective implant removal (IR) accounts for up to 30% of all orthopaedic surgeries. While there is general acceptance about the need of implant removal for obvious reasons, such as infections or implant failure, little is known about the beneficial aspects in cases of minor reasons such as patients' wish for IR. Therefore, we initiated this study to define patients' benefit of elective implant removal following plate osteosynthesis of displaced clavicle fractures.!##!Patients and methods!#!Prospective evaluation of patients was conducted before implant removal and 6 weeks postoperative. Subjective and objective criteria included pain rating on a visual analogue scale (VAS) and active range of motion (ROM) pre- and 6 weeks postoperative. Functional scoring included Constant-Murley Score, DASH (Disabilities of Arm, Shoulder and Hand Score), MSQ (Munich Shoulder Questionnaire) and SPADI (Shoulder Pain and Disability Index).!##!Results!#!37 patients were prospectively enrolled in this study and implant removal was performed after 16 ± 6.1 months. No re-fractures nor other complications were detected during routine follow up. Functional outcome increased through all scores (Constant score 73.3 ± 14.6 preoperative to 87.4 ± 12.0 postoperative (p = 0.000), MSQ 85.0 ± 7.3 preoperative to 91.8 ± 9.0 postoperative (p = 0.005), DASH Score 7.4 ± 8.2 preoperative to 5.7 ± 9.5 postoperative (p = 0.414), SPADI 93.4 ± 6.6 preoperative to 94.0 ± 10.1 postoperative (p = 0.734).!##!Conclusions!#!Discomfort during daily activities or performing sports as well as limited range of motion were the main reasons for patients' wish for implant removal. We found increased functional outcome parameters and decreased irritation after implant removal. Therefore we suggest implant removal in case of patients' wish and completed fracture consolidation.!##!Trial registration!#!Trial registration no: NCT04343118, Retrospective registered: www.clinicaltrials.gov

    Dual Regulation of Fbw7 Function and Oncogenic Transformation by Usp28

    Get PDF
    Fbw7, the substrate recognition subunit of SCF(Fbw7) ubiquitin ligase, mediates the turnover of multiple proto-oncoproteins and promotes its own degradation. Fbw7-dependent substrate ubiquitination is antagonized by the Usp28 deubiquitinase. Here, we show that Usp28 preferentially antagonizes autocatalytic ubiquitination and stabilizes Fbw7, resulting in dose-dependent effects in Usp28 knockout mice. Monoallelic deletion of Usp28 maintains stable Fbw7 but drives Fbw7 substrate degradation. In contrast, complete knockout triggers Fbw7 degradation and leads to the accumulation of Fbw7 substrates in several tissues and embryonic fibroblasts. On the other hand, overexpression of Usp28 stabilizes both Fbw7 and its substrates. Consequently, both complete loss and ectopic expression of Usp28 promote Ras-driven oncogenic transformation. We propose that dual regulation of Fbw7 activity by Usp28 is a safeguard mechanism for maintaining physiological levels of proto-oncogenic Fbw7 substrates, which is equivalently disrupted by loss or overexpression of Usp28
    corecore