137 research outputs found

    Inception of early-life allergen–induced airway hyperresponsiveness is reliant on IL-13+CD4+ T cells

    Get PDF
    Airway hyperresponsiveness (AHR) is a critical feature of wheezing and asthma in children, but the initiating immune mechanisms remain unconfirmed. We demonstrate that both recombinant interleukin-33 (rIL-33) and allergen [house dust mite (HDM) or Alternaria alternata] exposure from day 3 of life resulted in significantly increased pulmonary IL-13+CD4+ T cells, which were indispensable for the development of AHR. In contrast, adult mice had a predominance of pulmonary LinnegCD45+CD90+IL-13+ type 2 innate lymphoid cells (ILC2s) after administration of rIL-33. HDM exposure of neonatal IL-33 knockout (KO) mice still resulted in AHR. However, neonatal CD4creIL-13 KO mice (lacking IL-13+CD4+ T cells) exposed to allergen from day 3 of life were protected from AHR despite persistent pulmonary eosinophilia, elevated IL-33 levels, and IL-13+ ILCs. Moreover, neonatal mice were protected from AHR when inhaled Acinetobacter lwoffii (an environmental bacterial isolate found in cattle farms, which is known to protect from childhood asthma) was administered concurrent with HDM. A. lwoffii blocked the expansion of pulmonary IL-13+CD4+ T cells, whereas IL-13+ ILCs and IL-33 remained elevated. Administration of A. lwoffii mirrored the findings from the CD4creIL-13 KO mice, providing a translational approach for disease protection in early life. These data demonstrate that IL-13+CD4+ T cells, rather than IL-13+ ILCs or IL-33, are critical for inception of allergic AHR in early life

    Oxygenation-sensitive CMR for assessing vasodilator-induced changes of myocardial oxygenation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As myocardial oxygenation may serve as a marker for ischemia and microvascular dysfunction, it could be clinically useful to have a non-invasive measure of changes in myocardial oxygenation. However, the impact of induced blood flow changes on oxygenation is not well understood. We used oxygenation-sensitive CMR to assess the relations between myocardial oxygenation and coronary sinus blood oxygen saturation (SvO<sub>2</sub>) and coronary blood flow in a dog model in which hyperemia was induced by intracoronary administration of vasodilators.</p> <p>Results</p> <p>During administration of acetylcholine and adenosine, CMR signal intensity correlated linearly with simultaneously measured SvO<sub>2 </sub>(<it>r</it><sup>2 </sup>= 0.74, <it>P </it>< 0.001). Both SvO<sub>2 </sub>and CMR signal intensity were exponentially related to coronary blood flow, with SvO2 approaching 87%.</p> <p>Conclusions</p> <p>Myocardial oxygenation as assessed with oxygenation-sensitive CMR imaging is linearly related to SvO<sub>2 </sub>and is exponentially related to vasodilator-induced increases of blood flow. Oxygenation-sensitive CMR may be useful to assess ischemia and microvascular function in patients. Its clinical utility should be evaluated.</p

    Inter-subunit coupling enables fast CO2-fixation by reductive carboxylases

    Get PDF
    Enoyl-CoA carboxylases/reductases (ECRs) are some of the most efficient CO2-fixing enzymes described to date. However, the molecular mechanisms underlying the extraordinary catalytic activity of ECRs on the level of the protein assembly remain elusive. Here we used a combination of ambient-temperature X-ray free electron laser (XFEL) and cryogenic synchrotron experiments to study the structural organization of the ECR from Kitasatospora setae. The K. setae ECR is a homotetramer that differentiates into a pair of dimers of open- and closed-form subunits in the catalytically active state. Using molecular dynamics simulations and structure-based mutagenesis, we show that catalysis is synchronized in the K. setae ECR across the pair of dimers. This conformational coupling of catalytic domains is conferred by individual amino acids to achieve high CO2-fixation rates. Our results provide unprecedented insights into the dynamic organization and synchronized inter- and intrasubunit communications of this remarkably efficient CO2-fixing enzyme during catalysis.

    Ectonucleotidases in MĂŒller glial cells of the rodent retina: Involvement in inhibition of osmotic cell swelling

    Get PDF
    Extracellular nucleotides mediate glia-to-neuron signalling in the retina and are implicated in the volume regulation of retinal glial (MĂŒller) cells under osmotic stress conditions. We investigated the expression and functional role of ectonucleotidases in MĂŒller cells of the rodent retina by cell-swelling experiments, calcium imaging, and immuno- and enzyme histochemistry. The swelling of MĂŒller cells under hypoosmotic stress was inhibited by activation of an autocrine purinergic signalling cascade. This cascade is initiated by exogenous glutamate and involves the consecutive activation of P2Y1 and adenosine A1 receptors, the action of ectoadenosine 5â€Č-triphosphate (ATP)ases, and a nucleoside-transporter-mediated release of adenosine. Inhibition of ectoapyrases increased the ATP-evoked calcium responses in MĂŒller cell endfeet. MĂŒller cells were immunoreactive for nucleoside triphosphate diphosphohydrolases (NTPDase)2 (but not NTPDase1), ecto-5â€Č-nucleotidase, P2Y1, and A1 receptors. Enzyme histochemistry revealed that ATP but not adenosine 5â€Č-diphosphate (ADP) is extracellularly metabolised in retinal slices of NTPDase1 knockout mice. NTPDase1 activity and protein is restricted to blood vessels, whereas activity of alkaline phosphatase is essentially absent at physiological pH. The data suggest that NTPDase2 is the major ATP-degrading ectonucleotidase of the retinal parenchyma. NTPDase2 expressed by MĂŒller cells can be implicated in the regulation of purinergic calcium responses and cellular volume
    • 

    corecore