1 research outputs found

    Fundamental parameters related to selenium kα and kβ emission x-ray spectra

    Get PDF
    This research was funded in part by FCT (Portugal) under research center grants UID/FIS/04559/2020 (LIBPhys) and UID/MULTI/04046/2020 (BioISI). This work was also funded through the project PTDC/FIS-AQM/31969/2017, "Ultra-high-accuracy x-ray spectroscopy of transition metal oxides and rare earths." J.M. and J.P.S acknowledge the support of EMPIR, under Contract No. 17FUN02MetroMMC. The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR participating States.We present relativistic ab initio calculations of fundamental parameters for atomic selenium, based on the Multiconfiguration Dirac-Fock method. In detail, fluorescence yields and subshell linewidths, both of K shell, as well as Kβ to Kα intensity ratio are provided, showing overall agreement with previous theoretical calculations and experimental values. Relative intensities were evaluated assuming the same ionization cross-section for the K-shell hole states, leading to a statistical distribution of these initial states. A method for estimating theoretical linewidths of X-ray lines, where the lines are composed by a multiplet of fine-structure levels that are spread in energy, is proposed. This method provides results that are closer to Kα1,2 experimental width values than the usual method, although slightly higher discrepancies occur for the Kβ1,3 lines. This indicates some inaccuracies in the calculation of Auger rates that have a higher contribution for partial linewidths of the subshells involved in the Kβ1,3 profile. Apart from this, the calculated value of Kβ to Kα intensity ratio, which is less sensitive to Auger rates issues, is in excellent agreement with recommended values.publishersversionpublishe
    corecore