2 research outputs found

    Al<sub>5+α</sub>Si<sub>5+δ</sub>N<sub>12</sub>, a new Nitride compound

    No full text
    The family of III-Nitride semiconductors has been under intensive research for almost 30 years and has revolutionized lighting applications at the dawn of the 21st century. However, besides the developments and applications achieved, nitride alloys continue to fuel the quest for novel materials and applications. We report on the synthesis of a new nitride-based compound by using annealing of AlN heteroepitaxial layers under a Si-atmosphere at temperatures between 1350 °C and 1550 °C. The structure and stoichiometry of this compound are investigated by high resolution transmission electron microscopy (TEM) techniques and energy dispersive X-Ray (EDX) spectroscopy. Results are supported by density functional theory (DFT) calculations. The identified structure is a derivative of the parent wurtzite AlN crystal where the anion sublattice is fully occupied by N atoms and the cation sublattice is the stacking of 2 different planes along lt;0001gt;: The first one exhibits a ×3 periodicity along lt;11–20gt; with 1/3 of the sites being vacant. The rest of the sites in the cation sublattice are occupied by an equal number of Si and Al atoms. Assuming a semiconducting alloy, a range of stoichiometries is proposed, Al5+αSi5+δN12 with α being between −2/3 and 1/4 and δ between 0 and 3/4. © 2019, The Author(s)

    MRSInternet Journal Nitride Semiconductor Research Mg-enhanced lateral overgrowth of GaN on patterned GaN/sapphire substrate by selective Metal Organic Vapor Phase Epitaxy

    No full text
    until coalescence to produce smooth and optically flat thick GaN layers. A GaN epitaxial layer is first grown using atmospheric pressure Metalorganic Vapour Phase Epitaxy on a {0001} Al 2 O 3. substrate. Then a 30Å silicon nitride dielectric film is deposited in-situ by reaction of silane and ammonia to form a selective mask. Afterwards, the openings and the figures in the dielectric films are achieved using standard photolithographic technology. Stripes openings in the mask, revealing free GaN surface, are aligned in the 〈1010 〉 direction. Typical stripes spacing and width are 10 μm and 5 μm respectively. These patterned layers are further on used for epitaxial regrowth of GaN by MOVPE. The growth anisotropy and therefore the coalescence process is achieved by introducing (MeCp) 2 Mg in the vapour phase. A two-step process is reported which allows a dramatic reduction of threading dislocations density not only above the masked areas but also above the windows opened in the mask. With this process, very sharp bound exciton luminescence peaks are measured at low temperature in the overgrown GaN.
    corecore