19 research outputs found

    E-cadherin expression is associated with somatostatin analogue response in acromegaly

    Get PDF
    Acromegaly is a rare disease resulting from hypersecretion of growth hormone (GH) and insulin‐like growth factor 1 (IGF1) typically caused by pituitary adenomas, which is associated with increased mortality and morbidity. Somatostatin analogues (SSAs) represent the primary medical therapy for acromegaly and are currently used as first‐line treatment or as second‐line therapy after unsuccessful pituitary surgery. However, a considerable proportion of patients do not adequately respond to SSAs treatment, and therefore, there is an urgent need to identify biomarkers predictors of response to SSAs. The aim of this study was to examine E‐cadherin expression by immunohistochemistry in fifty‐five GH‐producing pituitary tumours and determine the potential association with response to SSAs as well as other clinical and histopathological features. Acromegaly patients with tumours expressing low E‐cadherin levels exhibit a worse response to SSAs. E‐cadherin levels are associated with GH‐producing tumour histological subtypes. Our results indicate that the immunohistochemical detection of E‐cadherin might be useful in categorizing acromegaly patients based on the response to SSAs.ISCIII‐Subdirección General de Evaluación y Fomento de la Investigación PI13/02043 PI16/00175FEDER PI13/02043 PI16/00175Junta de Andalucía A‐0023‐2015 A‐0003‐2016 CTS‐1406 BIO‐0139Andalusian Ministry of Health C‐0015‐2014CIBERobn PI13/ 02043 PI16/0017

    The Pituitary Gland is a Novel Major Site of Action of Metformin in Non-Human Primates: a Potential Path to Expand and Integrate Its Metabolic Actions

    Get PDF
    Background/Aims: Biguanides are anti-hyperglycaemic agents used to treat diabetes by acting primarily on the liver, inhibiting hepatic gluconeogenesis. However, biguanides may target other key metabolic tissues to exert beneficial actions. As the “master endocrine gland”, the pituitary is a true homeostatic sensor that controls whole body homeostasis and metabolism by integrating central and peripheral signals. However, whether the pituitary is a primary site of biguanides action in normal adult humans/primates remains unknown. Therefore, we aimed to elucidate the direct effects of two biguanides (metformin/phenformin) on the expression and secretion of all anterior pituitary hormones in two non-human primate species (Papio anubis and Macaca fascicularis), and the molecular/signalling-mechanisms behind these actions. Methods: Primary pituitary cell cultures from baboons and macaques were used to determine the direct impact of metformin/phenformin (alone and combined with primary regulators) on the functioning of all pituitary cell-types (i.e. expression/secretion/signaling-pathways, etc). Results: Metformin/phenformin inhibited basal, but not GHRH/ghrelin-stimulated GH/ACTH/ FSH-secretion and GH/POMC-expression, without altering secretion or expression of other pituitary hormones (PRL/LH/TSH), FSH-expression or cell viability in both primate models. These biguanide actions are likely mediated through modulation of: 1) common (mTOR/PI3K/intracellular-Ca2+mobilization) and distinct (MAPK) signaling pathways; and 2) gene expression of key receptors regulating somatotrope/corticotrope/gonadotrope function (i.e. upregulation of SSTR2/SSTR5/INSR/IGF1R/LEPR). Conclusion: The pituitary gland is a primary target of biguanide actions wherein they modulate somatotrope/corticotrope/gonadotrope-function through multiple molecular/signaling pathways in non-human primate-models. This suggests that the well-known metabolic effects of biguanides might be, at least in part, influenced by their actions at the pituitary level

    A Somatostatin Receptor Subtype-3 (SST3) Peptide Agonist Shows Antitumor Effects in Experimental Models of Nonfunctioning Pituitary Tumors

    Get PDF
    [Purpose] Somatostatin analogues (SSA) are efficacious and safe treatments for a variety of neuroendocrine tumors, especially pituitary neuroendocrine tumors (PitNET). Their therapeutic effects are mainly mediated by somatostatin receptors SST2 and SST5. Most SSAs, such as octreotide/lanreotide/pasireotide, are either nonselective or activate mainly SST2. However, nonfunctioning pituitary tumors (NFPTs), the most common PitNET type, mainly express SST3 and finding peptides that activate this particular somatostatin receptor has been very challenging. Therefore, the main objective of this study was to identify SST3-agonists and characterize their effects on experimental NFPT models.[Experimental Design] Binding to SSTs and cAMP level determinations were used to screen a peptide library and identify SST3-agonists. Key functional parameters (cell viability/caspase activity/chromogranin-A secretion/mRNA expression/intracellular signaling pathways) were assessed on NFPT primary cell cultures in response to SST3-agonists. Tumor growth was assessed in a preclinical PitNET mouse model treated with a SST3-agonist. [Results] We successfully identified the first SST3-agonist peptides. SST3-agonists lowered cell viability and chromogranin-A secretion, increased apoptosis in vitro, and reduced tumor growth in a preclinical PitNET model. As expected, inhibition of cell viability in response to SST3-agonists defined two NFPT populations: responsive and unresponsive, wherein responsive NFPTs expressed more SST3 than unresponsive NFPTs and exhibited a profound reduction of MAPK, PI3K-AKT/mTOR, and JAK/STAT signaling pathways upon SST3-agonist treatments. Concurrently, SSTR3 silencing increased cell viability in a subset of NFPTs. [Conclusions] This study demonstrates that SST3-agonists activate signaling mechanisms that reduce NFPT cell viability and inhibit pituitary tumor growth in experimental models that expresses SST3, suggesting that targeting this receptor could be an efficacious treatment for NFPTs.This work has been funded by the following grants: Junta de Andalucía [CTS-1406 (R.M. Luque), BIO-0139 (J.P. Castaño)]; Ministerio de Ciencia, Innovación y Universidades [BFU2016-80360-R (J.P. Castaño)] and Instituto de Salud Carlos III, co-funded by European Union [ERDF/ESF, “Investing in your future”: PI16/00264 (R.M. Luque), CP15/00156 (M.D. Gahete) and CIBERobn]. CIBER is an initiative of Instituto de Salud Carlos III

    Intraoperative oxygen tension and redox homeostasis in Pseudomyxoma peritonei: A short case series

    Get PDF
    IntroductionPseudomyxoma peritonei (PMP) is a rare malignant disease characterized by a massive multifocal accumulation of mucin within the peritoneal cavity. The current treatment option is based on complete cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy. However, the recurrence is frequent with subsequent progression and death. To date, most of the studies published in PMP are related to histological and genomic analyses. Thus, the need for further studies unveiling the underlying PMP molecular mechanisms is urgent. In this regard, hypoxia and oxidative stress have been extensively related to tumoral pathologies, although their contribution to PMP has not been elucidated.MethodsIn this manuscript, we have evaluated, for the first time, the intratumoral real-time oxygen microtension (pO2mt) in the tumor (soft and hard mucin) and surrounding healthy tissue from five PMP patients during surgery. In addition, we measured hypoxia (Hypoxia Inducible Factor-1a; HIF-1α) and oxidative stress (catalase; CAT) markers in soft and hard mucin from the same five PMP patient samples and in five control samples.ResultsThe results showed low intratumoral oxygen levels, which were associated with increased HIF-1α protein levels, suggesting the presence of a hypoxic environment in these tumors. We also found a significant reduction in CAT activity levels in soft and hard mucin compared with healthy tissue samples.DiscussionIn conclusion, our study provides the first evidence of low intratumoral oxygen levels in PMP patients associated with hypoxia and oxidative stress markers. However, further investigation is required to understand the potential role of oxidative stress in PMP in order to find new therapeutic strategies

    Towards Understanding the Direct and Indirect Actions of Growth Hormone in Controlling Hepatocyte Carbohydrate and Lipid Metabolism

    No full text
    Growth hormone (GH) is critical for achieving normal structural growth. In addition, GH plays an important role in regulating metabolic function. GH acts through its GH receptor (GHR) to modulate the production and function of insulin-like growth factor 1 (IGF1) and insulin. GH, IGF1, and insulin act on multiple tissues to coordinate metabolic control in a context-specific manner. This review will specifically focus on our current understanding of the direct and indirect actions of GH to control liver (hepatocyte) carbohydrate and lipid metabolism in the context of normal fasting (sleep) and feeding (wake) cycles and in response to prolonged nutrient deprivation and excess. Caveats and challenges related to the model systems used and areas that require further investigation towards a clearer understanding of the role GH plays in metabolic health and disease are discussed

    Quantitative Analysis of Somatostatin and Dopamine Receptors Gene Expression Levels in Non-Functioning Pituitary Tumors and Association with Clinical and Molecular Aggressiveness Features

    No full text
    The primary treatment for non-functioning pituitary tumors (NFPTs) is surgery, but it is often unsuccessful. Previous studies have reported that NFPTs express receptors for somatostatin (SST1-5) and dopamine (DRDs) providing a rationale for the use of dopamine agonists and somatostatin analogues. Here, we systematically assessed SST1-5 and DRDs expression by real-time quantitative PCR (RT-qPCR) in a large group of patients with NFPTs (n = 113) and analyzed their potential association with clinical and molecular aggressiveness features. SST1-5 expression was also evaluated by immunohistochemistry. SST3 was the predominant SST subtype detected, followed by SST2, SST5, and SST1. DRD2 was the dominant DRD subtype, followed by DRD4, DRD5, and DRD1. A substantial proportion of NFPTs displayed marked expression of SST2 and SST5. No major association between SSTs and DRDs expression and clinical and molecular aggressiveness features was observed in NFPTsISCIII-Subdirección General de Evaluación y Fomento de la Investigación co-funded with Fondos FEDER PI16/00175 to A.S.-M. and D.A.C; PI16/00264 to R.M.L.Sistema Andaluz de Salud A-0006-2017 and A-0055-2018 to A.S.-M, C-0015-2014 and RC-0006-2018 to D.A.C.Ministerio de Ciencia, Innovación BFU2016-80360-R to J.P.C.; PID2019-105564RB-I00 to R.M.L.Junta de Andalucía BIO-0139 to J.P.C. and R.M.L.Instituto de Salud Carlos III, Ministerio de Sanidad, Servicios Sociales e Igualdad, Spai

    A New Generation Somatostatin-Dopamine Analogue Exerts Potent Antitumoral Actions on Pituitary Neuroendocrine Tumor Cells

    No full text
    [Background] Pituitary neuroendocrine tumors (PitNETs) represent approximately 15% of all intracranial tumors and usually are associated with severe comorbidities. Unfortunately, a relevant number of patients do not respond to currently available pharmacological treatments, that is, somatostatin analogs (SSAs) or dopamine-agonists (DA). Thus, novel, chimeric somatostatin/dopamine compounds (dopastatins) that could improve medical treatment of PitNETs have been designed. [Objective] This study aims to determine the direct therapeutic effects of a new-generation dopastatin, BIM-065, on primary cell cultures from different PitNETs subtypes.[Methods] Thirty-one PitNET-derived cell cultures (9 corticotropinomas, 9 somatotropinomas, 11 nonfunctioning pituitary adenomas [NFPAs], and 2 prolactinomas), were treated with BIM-065, and key functional endpoints were assessed (cell viability, apoptosis, hormone secretion, expression levels of key genes, free cytosolic [Ca2+]i dynamics, etc.). AtT-20 cell line was used to evaluate signaling pathways in response to BIM-065.[Results] This chimeric compound decreased cell viability in all corticotropinomas and somatotropinomas tested, but not in NFPAs. BIM-065 reduced ACTH, GH, chromogranin-A and PRL secretion, and increased apoptosis in corticotropinomas, somatotropinomas, and NFPAs. These effects were possibly mediated through modulation of pivotal signaling cascades like [Ca2+]i kinetic and Akt- or ERK1/2-phosphorylation.[Conclusions] Our results unveil a robust antitumoral effect in vitro of the novel chimeric compound BIM-065 on the main PitNET subtypes, inform on the mechanisms involved, and suggest that BIM-065 could be an efficacious therapeutic option to be considered in the treatment of PitNETs.This work was supported by the following grants: Junta de Andalucía (CTS-1406, BIO-0139); Instituto de Salud Carlos III-FIS (co-funded by European Union [ERDF/ESF, “Investing in your future”; PI16/00264, and “Miguel Servet” Program CP15/00156]), Ministerio de Ciencia, Innovación y Universidades, (BFU2016-80360-R) and CIBERobn. Ciber is an initiative of Instituto de Salud Carlos III, Ministerio de Ciencia, Innovación y Universidades, Spain

    A New Generation Somatostatin-Dopamine Analogue Exerts Potent Antitumoral Actions on Pituitary Neuroendocrine Tumor Cells.

    No full text
    Pituitary neuroendocrine tumors (PitNETs) represent approximately 15% of all intracranial tumors and usually are associated with severe comorbidities. Unfortunately, a relevant number of patients do not respond to currently available pharmacological treatments, that is, somatostatin analogs (SSAs) or dopamine-agonists (DA). Thus, novel, chimeric somatostatin/dopamine compounds (dopastatins) that could improve medical treatment of PitNETs have been designed. This study aims to determine the direct therapeutic effects of a new-generation dopastatin, BIM-065, on primary cell cultures from different PitNETs subtypes. Thirty-one PitNET-derived cell cultures (9 corticotropinomas, 9 somatotropinomas, 11 nonfunctioning pituitary adenomas [NFPAs], and 2 prolactinomas), were treated with BIM-065, and key functional endpoints were assessed (cell viability, apoptosis, hormone secretion, expression levels of key genes, free cytosolic [Ca2+]i dynamics, etc.). AtT-20 cell line was used to evaluate signaling pathways in response to BIM-065. This chimeric compound decreased cell viability in all corticotropinomas and somatotropinomas tested, but not in NFPAs. BIM-065 reduced ACTH, GH, chromogranin-A and PRL secretion, and increased apoptosis in corticotropinomas, somatotropinomas, and NFPAs. These effects were possibly mediated through modulation of pivotal signaling cascades like [Ca2+]i kinetic and Akt- or ERK1/2-phosphorylation. Our results unveil a robust antitumoral effect in vitro of the novel chimeric compound BIM-065 on the main PitNET subtypes, inform on the mechanisms involved, and suggest that BIM-065 could be an efficacious therapeutic option to be considered in the treatment of PitNETs

    Clinical significance of filamin A in patients with acromegaly and its association with somatostatin and dopamine receptor profiles

    No full text
    Abstract Filamin-A (FLNA) plays a crucial role in somatostatin receptor (sst) subtype-2 signaling in somatotropinomas. Our objective was to investigate the in vivo association between FLNA and sst2 expression, sst5 expression, dopamine receptor subtype-2 (D2) expression, somatostatin receptor ligand (SRL) responsiveness and tumor invasiveness in somatotropinomas. Quantitative real-time PCR was used to evaluate the absolute mRNA copy numbers of FLNA/sst2/sst5/D2 in 96 somatotropinomas. FLNA, sst2 and sst5 protein expression levels were also evaluated using immunohistochemistry. The Knosp-Steiner criteria were used to evaluate tumor invasiveness. Median FLNA, sst2, sst5 and D2 copy numbers were 4,244, 731, 156 and 3,989, respectively. Thirty-one of the 35 available tumors (89%) were immune positive for FLNA in the cytoplasm and membrane but not in the nucleus. FLNA and sst5 expression were positively correlated at the mRNA and protein levels (p < 0.001 and p = 0.033, respectively). FLNA was positively correlated with sst2 mRNA in patients who were responsive to SRL (p = 0.014, R = 0.659). No association was found between FLNA and tumor invasiveness. Our findings show that in somatotropinomas FLNA expression positively correlated with in vivo sst5 and D2 expression. Notably, FLNA was only correlated with sst2 in patients who were controlled with SRL. FLNA was not associated with tumor invasiveness
    corecore