30 research outputs found

    Shape of an elastica under growth restricted by friction

    Get PDF
    We investigate the quasi-static growth of elastic fibers in the presence of dry or viscous friction. An unusual form of destabilization beyond a critical length is described. In order to characterize this phenomenon, a new definition of stability against infinitesimal perturbations over finite time intervals is proposed and a semi-analytical method for the determination of the critical length is developed. The post-critical behavior of the system is studied by using an appropriate numerical scheme based on variational methods. We find post-critical shapes for uniformly distributed as well as for concentrated growth and demonstrate convergence to a figure-8 shape for large lengths when self-crossing is allowed. Comparison with simple physical experiments yields reasonable accuracy of the theoretical predictions

    Explaining the elongated shape of 'Oumuamua by the Eikonal abrasion model

    Get PDF
    The photometry of the minor body with extrasolar origin (1I/2017 U1) 'Oumuamua revealed an unprecedented shape: Meech et al. (2017) reported a shape elongation b/a close to 1/10, which calls for theoretical explanation. Here we show that the abrasion of a primordial asteroid by a huge number of tiny particles ultimately leads to such elongated shape. The model (called the Eikonal equation) predicting this outcome was already suggested in Domokos et al. (2009) to play an important role in the evolution of asteroid shapes.Comment: Accepted by the Research Notes of the AA
    corecore