8 research outputs found

    Absorption and Tensility of Bioactive Sutures Prepared for Cell Transplantation

    Get PDF
    Biodegradable scaffolds are widely used to transplant stem cells into various tissues. Recent studies showed that living stem cells can be attached to the surface of absorbable sutures in vitro. Soaking the absorbable material polyglactin in a cell culture medium and thereby creating a stem cell biofilm on its surface may initiate the absorption process even before implantation; therefore, the physicochemical properties of the suture may be compromised in vivo. We found that pre-incubation of sutures in cell culture media in vitro results in tensile strength reduction and faster suture absorption in a rat model of muscle injury. Shorter incubation times of up to 48 h do not influence absorption or tensility; therefore, it is advisable to limit incubation times to two days for polyglactin-based cell delivery protocols

    Increased release time of antibiotics from bone allografts through a novel biodegradable coating

    Get PDF
    Theuse of bone allografts is contraindicated in septic revision surgery due to the high risk of graft reinfection.Antibiotic release from the graft may solve the problem and these combinations can theoretically be used for prevention or even therapy of infection.The present study investigated whether amoxicillin, ciprofloxacin, and vancomycin alone or in combination with chitosan or alginate are suitable for short-term or long-term bone coating. Human bone allografts were prepared from femoral head and lyophilized. Antibiotic coating was achieved by incubating the grafts in antibiotic solution and freeze-drying again. Two biopolymers chitosan and alginate were used for creating sustained-release implantable coatings and the drug release profile was characterized in vitro by spectrophotometry. Using lyophilization with or without chitosan only resulted in short-term release that lasted up to 48 hours. Alginate coating enabled a sustained release that lasted for 8 days with amoxicillin, 28 days with ciprofloxacin coating, and 50 days with vancomycin coating. Using only implantable biodegradable allograft and polymers, a sustained release of antibiotics was achieved with ciprofloxacin and vancomycin for several weeks. Since the calculated daily release of the antibiotic was lower than the recommended IV dose, the calcium alginate coated bone graft can support endoprosthesis revision surgery

    Eating habits modulate short term memory and epigenetical regulation of brain derived neurotrophic factor in hippocampus of low- and high running capacity rats

    Get PDF
    Exercise capacity and dietary restriction (DR) are linked to improved quality of life, including enhanced brain function and neuro-protection. Brain derived neurotrophic factor (BDNF) is one of the key proteins involved in the beneficial effects of exercise on brain. Low capacity runner (LCR) and high capacity runner (HCR) rats were subjected to DR in order to investigate the regulation of BDNF. HCR-DR rats out-performed other groups in a passive avoidance test. BDNF content increased significantly in the hippocampus of HCR-DR groups compared to control groups (p<0.05). The acetylation of H3 increased significantly only in the LCR-DR group. However, chip-assay revealed that the specific binding between acetylated histone H3 and BNDF promoter was increased in both LCR-DR and HCR-DR groups. In spite of these increases in binding, at the transcriptional level only, the LCR-DR group showed an increase in BDNF mRNA content. Additionally, DR also induced the activity of cAMP response element-binding protein (CREB), while the content of SIRT1 was not altered. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) was elevated in HCR-DR groups. But, based on the levels of nuclear respiratory factor-1 and cytocrome c oxidase, it appears that DR did not cause mitochondrial biogenesis. The data suggest that DR-mediated induction of BDNF levels includes chromatin remodeling. Moreover, DR does not induce mitochondrial biogenesis in the hippocampus of LCR/HCR rats. DR results in different responses to a passive avoidance test, and BDNF regulation in LCR and HCR rats

    The Composition of Hyperacute Serum and Platelet-Rich Plasma Is Markedly Different despite the Similar Production Method

    Get PDF
    Autologous blood derived products, such as platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) are widely applied in regenerative therapies, in contrast to the drawbacks in their application, mainly deriving from the preparation methods used. Eliminating the disadvantages of both PRP and PRF, hyperacute serum (HAS) opens a new path in autologous serum therapy showing similar or even improved regenerative potential at the same time. Despite the frequent experimental and clinical use of PRP and HAS, their protein composition has not been examined thoroughly yet. Thus, we investigated and compared the composition of HAS, serum, PRP and plasma products using citrate and EDTA by simple laboratory tests, and we compared the composition of HAS, serum, EDTA PRP and plasma by Proteome Profiler and ELISA assays. According to our results the natural ionic balance was upset in both EDTA and citrate PRP as well as in plasma. EDTA PRP contained significantly higher level of growth factors and cytokines, especially platelet derived angiogenic and inflammatory proteins, that can be explained by the significantly higher number of platelets in EDTA PRP. The composition analysis of blood derivatives revealed that although the preparation method of PRP and HAS were similar, the ionic and protein composition of HAS could be advantageous for cell function

    The Effects of Hyperacute Serum on the Elements of the Human Subchondral Bone Marrow Niche

    Get PDF
    Mesenchymal stem cells (MSCs) are widely used in laboratory experiments as well as in human cell therapy. Their culture requires animal sera like fetal calf serum (FCS) as essential supplementation; however, animal sera pose a risk for clinical applications. Human blood derivatives, for example, platelet-rich plasma (PRP) releasates, are potential replacements of FCS; however, it is unclear which serum variant has the best effect on the given cell or tissue type. Additionally, blood derivatives are commonly used in musculoskeletal diseases like osteoarthritis (OA) or osteonecrosis as "proliferative agents" for the topical MSC pool. Hyperacute serum (HAS), a new serum derivative, has been designed to approximate the natural coagulation cascade with a single-step, additive-free preparation method. We investigated the effects of HAS on monolayer MSC cultures and in their natural niche, in 3D subchondral bone and marrow explants. Viability measurements, RT-qPCR evaluation for gene expression and flow cytometry for cell surface marker analysis were performed to compare the effects of FCS-, PRP-, or HAS-supplemented culture media. Monolayer MSCs showed significantly higher metabolic activity following 5 days' incubation in HAS, and osteoblast-specific mRNA expression was markedly increased, while cells also retained their MSC-specific cell surface markers. A similar effect was observed on bone and marrow explants, which was further confirmed with confocal microscopy analysis. Moreover, markedly higher bone marrow preservation was observed with histology in case of HAS supplementation compared to FCS. These findings indicate possible application of HAS in regenerative solutions of skeletal diseases like OA or osteonecrosis

    Remineralization of demineralized bone matrix in critical size cranial defects in rats: A 6-month follow-up study

    No full text
    The key drawback of using demineralized bone matrix (DBM) is its low initial mechanical stability due to the severe depletion of mineral content. In the present study, we investigated the long-term regeneration of DBM in a critical size bone defect model and investigated the remineralization after 6 months. Bone defects were created in the cranium of male Wistar rats which were filled with DBM or left empty as negative control. In vivo bone formation was monitored with computed tomography after 11, 19, and 26 weeks postoperatively. After 6 months, parietal bones were subjected to micro-CT. Mineral content was determined with spectrophotometric analysis. After 11 weeks the DBM-filled bone defects were completely closed, while empty defects were still open. Density of the DBM-treated group increased significantly while the controls remained unchanged. Quantitative analysis by micro-CT confirmed the in vivo results, bone volume/tissue volume was significantly lower in the controls than in the DBM group. The demineralization procedure depleted the key minerals of the bone to a very low level. Six months after implantation Ca, P, Na, Mg, Zn, and Cr contents were completely restored to the normal level, while K, Sr, and Mn were only partially restored. The remineralization process of DBM is largely complete by the 6th month after implantation in terms of bone density, structure, and key mineral levels. Although DBM does not provide sufficient sources for any of these minerals, it induces a faster and more complete regeneration process. (c) 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2015

    The Effects of Hyperacute Serum on the Elements of the Human Subchondral Bone Marrow Niche

    No full text
    Mesenchymal stem cells (MSCs) are widely used in laboratory experiments as well as in human cell therapy. Their culture requires animal sera like fetal calf serum (FCS) as essential supplementation; however, animal sera pose a risk for clinical applications. Human blood derivatives, for example, platelet-rich plasma (PRP) releasates, are potential replacements of FCS; however, it is unclear which serum variant has the best effect on the given cell or tissue type. Additionally, blood derivatives are commonly used in musculoskeletal diseases like osteoarthritis (OA) or osteonecrosis as “proliferative agents” for the topical MSC pool. Hyperacute serum (HAS), a new serum derivative, has been designed to approximate the natural coagulation cascade with a single-step, additive-free preparation method. We investigated the effects of HAS on monolayer MSC cultures and in their natural niche, in 3D subchondral bone and marrow explants. Viability measurements, RT-qPCR evaluation for gene expression and flow cytometry for cell surface marker analysis were performed to compare the effects of FCS-, PRP-, or HAS-supplemented culture media. Monolayer MSCs showed significantly higher metabolic activity following 5 days’ incubation in HAS, and osteoblast-specific mRNA expression was markedly increased, while cells also retained their MSC-specific cell surface markers. A similar effect was observed on bone and marrow explants, which was further confirmed with confocal microscopy analysis. Moreover, markedly higher bone marrow preservation was observed with histology in case of HAS supplementation compared to FCS. These findings indicate possible application of HAS in regenerative solutions of skeletal diseases like OA or osteonecrosis
    corecore