5 research outputs found

    Design and Implementation of a Computational Platform and a Parallelized Interaction Analysis for Large Scale Genomics Data in Multiple Sclerosis

    Get PDF
    Abstract The multiple sclerosis (MS) genetics research group led by professor Jan Hillert at Karolinska Institutet, focuses on investigating the aetiology of the disease. Samples have been collected routinely from patients visiting the clinic for decades. From these samples, large amounts of genetics data is being generated. The traditional methods of analyzing the data is becoming increasingly inefficient as data sets grow larger. New approaches are needed to perform the analyses. This thesis gives an introduction to the relevant genetics and discusses possible approaches for enabling more efficient execution of legacy analysis tools, as well as improving a gene-environment and gene-gene interaction analysis. Different computational paradigms are presented followed by the implementation of a computational platform to support the researchers' existing, and possibly future, analysis needs. The improved interaction analysis application is then implemented and executed in a virtual instance of this platform. The performance of the analysis application is then evaluated with respect to the original reference application. Referat Design och implementation av berÀkningsplattform och paralelliserad interaktionsanalys för storskaliga genetiska data inom multipel skleros Professor Jan Hillert vid Karolinska Institutet leder en forskargrupp som fokuserar pÄ etiologin bakom multipel skleros (MS). Under flera Ärtionden har patientprover samlats in frÄn kliniken och frÄn dessa prover har stora mÀngder genetiska data genererats. De traditionella analysmetoderna blir allt mer ineffektiva dÄ datamÀngderna öker. Det finns ett stort behov av nya tillvÀgagÄngssÀtt och metoder för att analysera dessa data. Denna uppsats ger en introduktion i relevant genetik och diskuterar olika tillvÀgagÄngssÀtt för att möjliggöra effektivare exekvering av befintliga analysverktyg, sÄ vÀl som förbÀttring av en gen-miljö och gen-gen-interaktionsanalys. Olika etablerade berÀkningsparadigmer presenteras, följt av en implementation av en berÀkningsplattform som ett stöd i att tillgodose forskargruppens nuvarande och möjli-ga framtida behov. Den förbÀttrade interaktionsanalysen Àr sedan implementerad och exekverad i en virtuell instans av plattformen. Interaktionsanalysens prestanda utvÀrderas sedan och jÀmförs med ursprungsimplementationen

    The Genetic Interacting Landscape of 63 Candidate Genes in Major Depressive Disorder: An Explorative Study

    Get PDF
    Background: Genetic contributions to major depressive disorder (MDD) are thought to result from multiple genes interacting with each other. Different procedures have been proposed to detect such interactions. Which approach is best for explaining the risk of developing disease is unclear. This study sought to elucidate the genetic interaction landscape in candidate genes for MDD by conducting a SNP-SNP interaction analysis using an exhaustive search through 3,704 SNP-markers in 1,732 cases and 1,783 controls provided from the GAIN MDD study. We used three different methods to detect interactions, two logistic regressions models (multiplicative and additive) and one data mining and machine learning (MDR) approach. Results: Although none of the interaction survived correction for multiple comparisons, the results provide important information for future genetic interaction studies in complex disorders. Among the 0.5% most significant observations, none had been reported previously for risk to MDD. Within this group of interactions, less than 0.03% would have been detectable based on main effect approach or an a priori algorithm. We evaluated correlations among the three different models and conclude that all three algorithms detected the same interactions to a low degree. Although the top interactions had a surprisingly large effect size for MDD (e.g. additive dominant model Puncorrected = 9.10E-9 with attributable proportion (AP) value = 0.58 and multiplicative recessive model with Puncorrected = 6.95E-5 with odds ratio (OR estimated from ÎČ3) value = 4.99) the area under the curve (AUC) estimates were low (\u3c 0.54). Moreover, the population attributable fraction (PAF) estimates were also low (\u3c 0.15). Conclusions: We conclude that the top interactions on their own did not explain much of the genetic variance of MDD. The different statistical interaction methods we used in the present study did not identify the same pairs of interacting markers. Genetic interaction studies may uncover previously unsuspected effects that could provide novel insights into MDD risk, but much larger sample sizes are needed before this strategy can be powerfully applied

    Design och implementation av berÀkningsplattform och paralelliserad interaktionsanalys för storskaliga genetiska data inom multipel skleros

    No full text
    The multiple sclerosis (MS) genetics research group led by professor Jan Hillert at Karolinska Institutet, focuses on investigating the aetiology of the disease. Samples have been collected routinely from patients visiting the clinic for decades. From these samples, large amounts of genetics data is being generated. The traditional methods of analyzing the data is becoming increasingly inefficient as data sets grow larger. New approaches are needed to perform the analyses. This thesis gives an introduction to the relevant genetics and discusses possible approaches for enabling more efficient execution of legacy analysis tools, as well as improving a gene-environment and gene-gene interaction analysis. Different computational paradigms are presented followed by the implementation of a computational platform to support the researchers’ existing, and possibly future, analysis needs. The improved interaction analysis application is then implemented and executed in a virtual instance of this platform. The performance of the analysis application is then evaluated with respect to the original reference application.Professor Jan Hillert vid Karolinska Institutet leder en forskargrupp som fokuserar pĂ„ etiologin bakom multipel skleros (MS). Under flera Ă„rtionden har patientprover samlats in frĂ„n kliniken och frĂ„n dessa prover har stora mĂ€ngder genetiska data genererats. De traditionella analysmetoderna blir allt mer ineffektiva dĂ„ datamĂ€ngderna öker. Det finns ett stort behov av nya tillvĂ€gagĂ„ngssĂ€tt och metoder för att analysera dessa data. Denna uppsats ger en introduktion i relevant genetik och diskuterar olika tillvĂ€gagĂ„ngssĂ€tt för att möjliggöra effektivare exekvering av befintliga analysverktyg, sĂ„ vĂ€l som förbĂ€ttring av en gen-miljö och gen-gen-interaktionsanalys. Olika etablerade berĂ€kningsparadigmer presenteras, följt av en implementation av en berĂ€kningsplattform som ett stöd i att tillgodose forskargruppens nuvarande och möjliga framtida behov. Den förbĂ€ttrade interaktionsanalysen Ă€r sedan implementerad och exekverad i en virtuell instans av plattformen. Interaktionsanalysens prestanda utvĂ€rderas sedan och jĂ€mförs med ursprungsimplementationen
    corecore