29 research outputs found

    A Method for Generating a Well-Distributed Pareto Set in Nonlinear Multiobjective Optimization

    Get PDF
    A method is presented for generating a well-distributed Pareto set in nonlinear multiobjective optimization. The approach shares conceptual similarity with the Physical Programming-based method, the Normal-Boundary Intersection and the Normal Constraint methods, in its systematic approach investigating the objective space in order to obtain a well-distributed Pareto set. The proposed approach is based on the generalization of the class functions which allows the orientation of the search domain to be conducted in the objective space. It is shown that the proposed modification allows the method to generate an even representation of the entire Pareto surface. The generation is performed for both convex and nonconvex Pareto frontiers. A simple algorithm has been proposed to remove local Pareto solutions. The suggested approach has been verified by several test cases, including the generation of both convex and concave Pareto frontiers

    Optimisation of multiple encapsulated electrode plasma actuator

    Get PDF
    The standard dielectric barrier discharge plasma actuator, in which an asymmetric arrangement of electrodes leads to momentum coupling into the surrounding air, has already demonstrated its capability for flow control. The new design of such an actuator exploits the multi-encapsulated electrodes to produce higher velocities providing more momentum into the background air. As the number of encapsulated electrodes increases and other variables such as the driving frequency and voltage amplitude are considered, finding the optimum actuator configuration for increasing the induced velocity becomes a challenge. Specially the task is prohibitive if it is implemented on an ad hoc basis. This paper uses D-optimal design to identify a handful of experiments, for which the velocity is obtained by Particle Imaging Velocimetry measurement. Afterwards, the velocity is modelled through a surrogate modelling practice, and the model is validated both experimentally and statistically. To find the optimum actuator configuration, numerical optimisation is conducted and the results are investigated through experiment. The results show that the surrogate modelling approach provides a cheap and yet efficient method for systematically investigating the effect of different parameters on the performance of the plasma actuator. © 2012 Published by Elsevier Masson SAS

    Hypersonic Aerodynamics and Heat Transfer

    No full text
    corecore