7 research outputs found

    Subcellular localization of the inositol 1,4,5-trisphosphate receptor, P400, in the vestibular complex and dorsal cochlear nucleus of the rat

    No full text
    The subcellular localization of the inositol 1,4,5-trisphosphate receptor protein P400, was studied in the vestibular complex, an area to which Purkinje cells project, as well as in neurons of the dorsal cochlear nucleus and in ectopic Purkinje cells of adult rat brain. The receptor was demonstrated by electron microscopical immunocytochemistry using the avidin-biotin peroxidase complex procedure, with the monoclonal antibody 4C11 raised against mouse cerebellar inositol 1,4,5-trisphosphate receptor protein. Immunoreactivity was found in preterminal fibres and terminal boutons in the nuclei of the vestibular complex, generally associated with the subsurface systems and stacks or fragments of smooth endoplasmic reticulum. Ectopic Purkinje cells and cartwheel cells of the dorsal cochlear nucleus also displayed immunoreactivity, but this was much less intense in the latter. The results of the present study suggest that this receptor protein, involved in the release of Ca2+, is located in sites that enable it to influence the synthesis, transport and release of neurotransmitters.Peer Reviewe

    Presence of calcitonin gene-related peptide in intraepithelial nerve fibers and motor end-plates of the cat esophagus: A light and electron microscopic study

    No full text
    The morphology and distribution of the motor end-plates in the striated muscle and the terminal nerve fibers in the epithelium of the wall of the esophagus, which contain calcitonin gene-related peptide, were studied by light and electron microscopic immunocytochemistry. Varicose immunoreactive nerve fibers arising from the subepithelial plexus were seen to penetrate into the epithelium where they ended in terminal boutons. These nerve fibers lost their Schwann cells just at the point of penetration into the epithelium. Characteristically, the epithelial cells of the spinous layer showed prominent tonofilaments in the part of the cytoplasm in contact with the immunoreactive nerve varicosities, but membrane specializations between these structures were not observed. In the striated muscle of the esophageal wall there were small, elliptical, immunoreactive motor end-plates, which contained a small number of axonal clear vesicles and mitochondria. They were associated with relatively short and rarely branched junctional folds, reduced postjunctional surfaces and few organelles in the underlying sarcoplasm, features characteristic of the neuromuscular junctions of slow-fatiguing red muscle fibers. The two types of immunoreactive nerve endings, epithelial and muscular, presumably participate in afferent and efferent limbs respectively of the neural control of esophageal motility. The relationship between immunoreactive nerve terminals and epithelial cells in the spinous layer exhibiting prominent tonofilaments allowed us to speculate about the existence of two different patterns of reception to sensory stimuli. The intraepithelial fibers that end in the middle layer of the epithelium could be related to mechanoreceptor reflexes, while those that end in the upper layer may be related to thermoreceptor reflexes or facilitate information about the chemical and other characteristics of foods.Peer Reviewe
    corecore