72 research outputs found

    気象要因で分類した全球降水量分布とその将来変化に関する研究

    Get PDF
    学位の種別: 論文博士審査委員会委員 : (主査)東京大学教授 沖 大幹, 東京大学教授 花木 啓祐, 東京大学教授 小池 俊雄, 東京大学教授 高薮 縁, 東京大学准教授 芳村 圭, 東京工業大学教授 鼎 信次郎University of Tokyo(東京大学

    Subaru Hyper Suprime-Cam Survey for An Optical Counterpart of GW170817

    Get PDF
    We perform a zz-band survey for an optical counterpart of a binary neutron star coalescence GW170817 with Subaru/Hyper Suprime-Cam. Our untargeted transient search covers 23.623.6 deg2^2 corresponding to the 56.6%56.6\% credible region of GW170817 and reaches the 50%50\% completeness magnitude of 20.620.6 mag on average. As a result, we find 60 candidates of extragalactic transients, including J-GEM17btc (a.k.a. SSS17a/DLT17ck). While J-GEM17btc is associated with NGC 4993 that is firmly located inside the 3D skymap of GW170817, the other 59 candidates do not have distance information in the GLADE v2 catalog or NASA/IPAC Extragalactic Database (NED). Among 59 candidates, 58 are located at the center of extended objects in the Pan-STARRS1 catalog, while one candidate has an offset. We present location, zz-band apparent magnitude, and time variability of the candidates and evaluate the probabilities that they are located inside of the 3D skymap of GW170817. The probability for J-GEM17btc is 64%64\% being much higher than those for the other 59 candidates (9.3×1032.1×101%9.3\times10^{-3}-2.1\times10^{-1}\%). Furthermore, the possibility, that at least one of the other 59 candidates is located within the 3D skymap, is only 3.2%3.2\%. Therefore, we conclude that J-GEM17btc is the most-likely and distinguished candidate as the optical counterpart of GW170817.Comment: 14 pages, 9 figures. Accepted for publication in PASJ (Publications of the Astronomical Society of Japan

    Event-to-event intensification of the hydrologic cycle from 1.5 °C to a 2 °C warmer world

    Get PDF
    Abstract The Paris agreement was adopted to hold the global average temperature increase to well below 2 °C and pursue efforts to limit it to 1.5 °C. Here, we investigate the event-to-event hydroclimatic intensity, where an event is a pair of adjacent wet and dry spells, under future warming scenarios. According to a set of targeted multi-model large ensemble experiments, event-wise intensification will significantly increase globally for an additional 0.5 °C warming beyond 1.5 °C. In high latitudinal regions of the North American continent and Eurasia, this intensification is likely to involve overwhelming increases in wet spell intensity. Western and Eastern North America will likely experience more intense wet spells with negligible changes of dry spells. For the Mediterranean region, enhancement of dry spells seems to be dominating compared to the decrease in wet spell strength, and this will lead to an overall event-wise intensification. Furthermore, the extreme intensification could be 10 times stronger than the mean intensification. The high damage potential of such drastic changes between flood and drought conditions poses a major challenge to adaptation, and the findings suggest that risks could be substantially reduced by achieving a 1.5 °C target

    Decreasing precipitation extremes at higher temperatures in tropical regions

    No full text
    It has been often accepted that rising troposphere temperatures will lead to higher precipitation intensities. This argument has origins in the Clausius-Clapeyron (C-C) relation, which indicates an increase in atmospheric moisture storage capacity of approximately 7% Kelvin-1. However, recent investigations carried out in mid-latitude regions indicate that changes in precipitation intensity do not necessarily follow the C-C relation. This study aimed to evaluate the connection between precipitation extremes and temperature in tropical regions, using measured data obtained at low latitude ranges over Brazil. The results indicate that the C-C relation is unlikely to explain the relation between precipitation extremes and temperatures in tropical regions. Moreover, this study suggests that, in tropical regions, higher temperatures may reduce the magnitude of extreme precipitation events, independent of the season of the year.JRC.H.5-Land Resources Managemen

    Crystallization and preliminary X-ray analysis of the major peanut allergen Ara h 1 core region.

    Get PDF
    Peanuts contain some of the most potent food allergens known to date. Ara h 1 is one of the three major peanut allergens. As a first step towards three-dimensional structure elucidation, recombinant Ara h 1 core region was cloned, expressed in Escherichia coli and purified to homogeneity. Crystals were obtained using 0.1 M sodium citrate pH 5.6, 0.1 M NaCl, 15% PEG 400 as precipitant. The crystals diffracted to 2.25 A resolution using synchrotron radiation and belonged to the monoclinic space group C2, with unit-cell parameters a=156.521, b=88.991, c=158.971 A, beta=107.144 degrees. Data were collected at the BL-38B1 station of SPring-8 (Hyogo, Japan)
    corecore