628 research outputs found

    A trend analysis and sub-regional distribution in number of people living with HIV and dying with TB in Africa, 1991 to 2006

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tuberculosis (TB) bacillus and the Human Immunodeficiency Virus (HIV) have formed a powerful alliance and are together responsible for more than five million deaths per year. TB is leading to increased mortality rates among people living with HIV/acquired immunodeficiency syndrome (AIDS). The aim of this study was to investigate the geographical and temporal distribution of TB-HIV deaths in Africa in order to identify possible high-risk areas.</p> <p>Methods</p> <p>Time trends in the 16-year study period from 1990 to 2005 were analyzed by multilevel Poisson growth curve models. Moran global and local indicators of spatial associations were used to test for evidence of global and local spatial clustering respectively.</p> <p>Results</p> <p>Eastern, Southern, Western, and Middle Africa experienced an upward trend in the number of reported TB-HIV deaths. The spatial distribution of TB cases was non-random and clustered, with a Moran's I = 0.454 (p = .001). Spatial clustering suggested that 13 countries were at increased risk of TB-HIV deaths, and six countries could be grouped as "hot spots".</p> <p>Conclusion</p> <p>Evidence shows that there is no decline in growth in the number of deaths due to TB among HIV positive in most Africa countries. There is presence of 'hot-spots' and very large differences persist between sub-regions. Only by tackling TB and HIV together will progress be made in reversing the burden of both diseases. There is a great need for scale-up of preventive interventions such as the World Health Organization '3I's strategy' (intensified case finding, isoniazid preventive therapy and infection control).</p

    Combustion kinetics of Shankodi-Jangwa coal

    Get PDF
    The lack of comprehensive data on the fuel properties of newly discovered coal deposits in Nigeria has hampered the prospective utilisation for power generation. Consequently, this study is aimed at characterising the physicochemical and thermokinetic properties of Shankodi-Jangwa (SKJ) coal recently discovered in Nassarawa state, Nigeria. The results indicate that SKJ comprises 40.50% fixed carbon, 43.34% volatile matter, and 2.36% sulphur with a higher heating value (HHV) of 27.37 MJ kg-1. Based on this HHV, SKJ was classified as high-volatile B bituminous coal. Thermal analysis of SKJ under oxidative thermogravimetry (TG) at multiple heating rates revealed that SKJ is highly reactive and thermally degradable below 1000°C. Kinetic analysis using the Flynn-Wall-Ozawa model for conversions α = 0.05-0.90 revealed the activation energy to range from Ea = 113-259 kJ mol-1, with the frequency factor ranging from A = 2.9 × 1013-1.5 × 1023 min-1 and a range in R2 = 0.8536-0.9997; the average values of these ranges are Ea = 184 kJ mol-1, A = 9.2 × 1023 min-1 and R2 = 0.9420, respectively. The study highlighted fuel property data vital for modelling and designing future SKJ coal power generation
    corecore