9 research outputs found

    Individual regional associations between Aβ-, tau- and neurodegeneration (ATN) with microglial activation in patients with primary and secondary tauopathies.

    Get PDF
    β-amyloid (Aβ) and tau aggregation as well as neuronal injury and atrophy (ATN) are the major hallmarks of Alzheimer's disease (AD), and biomarkers for these hallmarks have been linked to neuroinflammation. However, the detailed regional associations of these biomarkers with microglial activation in individual patients remain to be elucidated. We investigated a cohort of 55 patients with AD and primary tauopathies and 10 healthy controls that underwent TSPO-, Aβ-, tau-, and perfusion-surrogate-PET, as well as structural MRI. Z-score deviations for 246 brain regions were calculated and biomarker contributions of Aβ (A), tau (T), perfusion (N1), and gray matter atrophy (N2) to microglial activation (TSPO, I) were calculated for each individual subject. Individual ATN-related microglial activation was correlated with clinical performance and CSF soluble TREM2 (sTREM2) concentrations. In typical and atypical AD, regional tau was stronger and more frequently associated with microglial activation when compared to regional Aβ (AD: βT = 0.412 ± 0.196 vs. βA = 0.142 ± 0.123, p < 0.001; AD-CBS: βT = 0.385 ± 0.176 vs. βA = 0.131 ± 0.186, p = 0.031). The strong association between regional tau and microglia reproduced well in primary tauopathies (βT = 0.418 ± 0.154). Stronger individual associations between tau and microglial activation were associated with poorer clinical performance. In patients with 4RT, sTREM2 levels showed a positive association with tau-related microglial activation. Tau pathology has strong regional associations with microglial activation in primary and secondary tauopathies. Tau and Aβ related microglial response indices may serve as a two-dimensional in vivo assessment of neuroinflammation in neurodegenerative diseases

    Individual regional associations between Aβ-, tau- and neurodegeneration (ATN) with microglial activation in patients with primary and secondary tauopathies

    Get PDF
    & beta;-amyloid (A & beta;) and tau aggregation as well as neuronal injury and atrophy (ATN) are the major hallmarks of Alzheimer's disease (AD), and biomarkers for these hallmarks have been linked to neuroinflammation. However, the detailed regional associations of these biomarkers with microglial activation in individual patients remain to be elucidated. We investigated a cohort of 55 patients with AD and primary tauopathies and 10 healthy controls that underwent TSPO-, A & beta;-, tau-, and perfusion-surrogate-PET, as well as structural MRI. Z-score deviations for 246 brain regions were calculated and biomarker contributions of A & beta;(A), tau (T), perfusion (N1), and gray matter atrophy (N2) to microglial activation (TSPO, I) were calculated for each individual subject. Individual ATN-related microglial activation was correlated with clinical performance and CSF soluble TREM2 (sTREM2) concentrations. In typical and atypical AD, regional tau was stronger and more frequently associated with microglial activation when compared to regional A & beta;(AD: & beta;(T) = 0.412 & PLUSMN;0.196 vs. & beta;(A) = 0.142 & PLUSMN;0.123, p < 0.001;AD-CBS: & beta;(T) = 0.385 & PLUSMN;0.176 vs. & beta;(A) = 0.131 & PLUSMN;0.186, p = 0.031). The strong association between regional tau and microglia reproduced well in primary tauopathies (& beta;(T) = 0.418 & PLUSMN;0.154). Stronger individual associations between tau and microglial activation were associated with poorer clinical performance. In patients with 4RT, sTREM2 levels showed a positive association with tau-related microglial activation. Tau pathology has strong regional associations with microglial activation in primary and secondary tauopathies. Tau and A & beta;related microglial response indices may serve as a two-dimensional in vivo assessment of neuroinflammation in neurodegenerative diseases

    Microglial activation and connectivity in Alzheimer disease and aging

    Get PDF
    OBJECTIVE Alzheimer disease (AD) is characterized by amyloid β (Aβ) plaques and neurofibrillary tau tangles, but increasing evidence suggests that neuroinflammation also plays a key role, driven by the activation of microglia. Aβ and tau pathology appear to spread along pathways of highly connected brain regions, but it remains elusive whether microglial activation follows a similar distribution pattern. Here, we assess whether connectivity is associated with microglia activation patterns. METHODS We included 32 Aβ-positive early AD subjects (18 women, 14 men) and 18 Aβ-negative age-matched healthy controls (10 women, 8 men) from the prospective ActiGliA (Activity of Cerebral Networks, Amyloid and Microglia in Aging and Alzheimer's Disease) study. All participants underwent microglial activation positron emission tomography (PET) with the third-generation mitochondrial 18 kDa translocator protein (TSPO) ligand [18 F]GE-180 and magnetic resonance imaging (MRI) to measure resting-state functional and structural connectivity. RESULTS We found that inter-regional covariance in TSPO-PET and standardized uptake value ratio was preferentially distributed along functionally highly connected brain regions, with MRI structural connectivity showing a weaker association with microglial activation. AD patients showed increased TSPO-PET tracer uptake bilaterally in the anterior medial temporal lobe compared to controls, and higher TSPO-PET uptake was associated with cognitive impairment and dementia severity in a disease stage-dependent manner. INTERPRETATION Microglial activation distributes preferentially along highly connected brain regions, similar to tau pathology. These findings support the important role of microglia in neurodegeneration, and we speculate that pathology spreads throughout the brain along vulnerable connectivity pathways. ANN NEUROL 2022

    Which features of subjective cognitive decline are related to amyloid pathology? Findings from the DELCODE study

    No full text
    BackgroundSubjective cognitive decline (SCD) has been proposed as a pre-MCI at-risk condition of Alzheimer's disease (AD). Current research is focusing on a refined assessment of specific SCD features associated with increased risk for AD, as proposed in the SCD-plus criteria. We developed a structured interview (SCD-I) for the assessment of these features and tested their relationship with AD biomarkers.MethodsWe analyzed data of 205 cognitively normal participants of the DELCODE study (mean age=68.9years; 52% female) with available CSF AD biomarkers (A beta-42, p-Tau181, A beta-42/Tau ratio, total Tau). For each of five cognitive domains (including memory, language, attention, planning, others), a study physician asked participants about the following SCD-plus features: the presence of subjective decline, associated worries, onset of SCD, feeling of worse performance than others of the same age group, and informant confirmation. We compared AD biomarkers of subjects endorsing each of these questions with those who did not, controlling for age. SCD was also quantified by two summary scores: the number of fulfilled SCD-plus features, and the number of domains with experienced decline. Covariate-adjusted linear regression analyses were used to test whether these SCD scores predicted abnormality in AD biomarkers.ResultsLower A beta-42 levels were associated with a reported decline in memory and language abilities, and with the following SCD-plus features: onset of subjective decline within 5years, confirmation of cognitive decline by an informant, and decline-related worries. Furthermore, both quantitative SCD scores were associated with lower A beta 42 and lower A beta 42/Tau ratio, but not with total Tau or p-Tau181.ConclusionsFindings support the usefulness of a criterion-based interview approach to assess and quantify SCD in the context of AD and validate the current SCD-plus features as predictors of AD pathology. While some features seem to be more closely associated with AD biomarkers than others, aggregated scores over several SCD-plus features or SCD domains may be the best predictors of AD pathology

    Microglial Activation and Connectivity in Alzheimer Disease and Aging

    No full text
    Objective Alzheimer disease (AD) is characterized by amyloid beta (A beta) plaques and neurofibrillary tau tangles, but increasing evidence suggests that neuroinflammation also plays a key role, driven by the activation of microglia. A beta and tau pathology appear to spread along pathways of highly connected brain regions, but it remains elusive whether microglial activation follows a similar distribution pattern. Here, we assess whether connectivity is associated with microglia activation patterns. Methods We included 32 A beta-positive early AD subjects (18 women, 14 men) and 18 A beta-negative age-matched healthy controls (10 women, 8 men) from the prospective ActiGliA (Activity of Cerebral Networks, Amyloid and Microglia in Aging and Alzheimer's Disease) study. All participants underwent microglial activation positron emission tomography (PET) with the third-generation mitochondrial 18 kDa translocator protein (TSPO) ligand [F-18]GE-180 and magnetic resonance imaging (MRI) to measure resting-state functional and structural connectivity. Results We found that inter-regional covariance in TSPO-PET and standardized uptake value ratio was preferentially distributed along functionally highly connected brain regions, with MRI structural connectivity showing a weaker association with microglial activation. AD patients showed increased TSPO-PET tracer uptake bilaterally in the anterior medial temporal lobe compared to controls, and higher TSPO-PET uptake was associated with cognitive impairment and dementia severity in a disease stage-dependent manner. Interpretation Microglial activation distributes preferentially along highly connected brain regions, similar to tau pathology. These findings support the important role of microglia in neurodegeneration, and we speculate that pathology spreads throughout the brain along vulnerable connectivity pathways. ANN NEUROL 202

    Which features of subjective cognitive decline are related to amyloid pathology? Findings from the DELCODE study

    Get PDF
    BackgroundSubjective cognitive decline (SCD) has been proposed as a pre-MCI at-risk condition of Alzheimer's disease (AD). Current research is focusing on a refined assessment of specific SCD features associated with increased risk for AD, as proposed in the SCD-plus criteria. We developed a structured interview (SCD-I) for the assessment of these features and tested their relationship with AD biomarkers.MethodsWe analyzed data of 205 cognitively normal participants of the DELCODE study (mean age=68.9years; 52% female) with available CSF AD biomarkers (A beta-42, p-Tau181, A beta-42/Tau ratio, total Tau). For each of five cognitive domains (including memory, language, attention, planning, others), a study physician asked participants about the following SCD-plus features: the presence of subjective decline, associated worries, onset of SCD, feeling of worse performance than others of the same age group, and informant confirmation. We compared AD biomarkers of subjects endorsing each of these questions with those who did not, controlling for age. SCD was also quantified by two summary scores: the number of fulfilled SCD-plus features, and the number of domains with experienced decline. Covariate-adjusted linear regression analyses were used to test whether these SCD scores predicted abnormality in AD biomarkers.ResultsLower A beta-42 levels were associated with a reported decline in memory and language abilities, and with the following SCD-plus features: onset of subjective decline within 5years, confirmation of cognitive decline by an informant, and decline-related worries. Furthermore, both quantitative SCD scores were associated with lower A beta 42 and lower A beta 42/Tau ratio, but not with total Tau or p-Tau181.ConclusionsFindings support the usefulness of a criterion-based interview approach to assess and quantify SCD in the context of AD and validate the current SCD-plus features as predictors of AD pathology. While some features seem to be more closely associated with AD biomarkers than others, aggregated scores over several SCD-plus features or SCD domains may be the best predictors of AD pathology

    Lifelong experiences as a proxy of cognitive reserve moderate the association between connectivity and cognition in Alzheimer's disease

    No full text
    Alzheimer's disease (AD) is associated with alterations in functional connectivity (FC) of the brain. The FC underpinnings of CR, that is, lifelong experiences, are largely unknown. Resting-state FC and structural MRI were performed in 76 CSF amyloid-beta (A beta) negative healthy controls and 152 A beta positive individ-uals as an AD spectrum cohort (ADS; 55 with subjective cognitive decline, SCD; 52 with mild cognitive impairment; 45 with AD dementia). Following a region-of-interest (ROI) FC analysis, intrinsic network connectivity within the default-mode network (INC-DMN) and anti-correlation in INC between the DMN and dorsal attention network (DMN:DAN) were obtained as composite scores. CR was estimated by ed-ucation and Lifetime Experiences Questionnaire (LEQ). The association between INC-DMN and MEM was attenuated by higher LEQ scores in the entire ADS group, particularly in SCD. In ROI analyses, higher LEQ scores were associated with higher FC within the DMN in ADS group. INC-DMN remains relatively in-tact despite memory decline in individuals with higher lifetime activity estimates, supporting a role for functional networks in maintaining cognitive function in AD.(c) 2022 Elsevier Inc. All rights reserved
    corecore