4 research outputs found

    Design of a Homogeneous Multifunctional Supported Lipid Membrane on Layer-by-Layer Coated Microcarriers

    No full text
    Key challenges in the development of drug delivery systems are the prevention of serum compartment interaction and the targeted delivery of the cargo. Layer-by-Layer microcarriers offer many advantages due to various options in drug assembly and multifunctional design. Surface modification with a supported lipid membrane enhances biocompatibility, drug protection ability, and specific functionality. However, the integration of functionalized lipids strongly influences the membrane formation and is often accompanied by submicrometer irregularities: The accessibility of underlying polymers to serum components may change the carrier’s properties and enhances the susceptibility to opsonization. Therefore, the formation of a tightly assembled multifunctional lipid membrane has been emphasized. A phosphatidylserine/phosphatidylcholine (POPS/POPC) bilayer equipped with phosphatidylethanolamine–polyethylene glycol–biotin (PE-PEG-Biotin) was used to facilitate a biotin/streptavidin binding site for a variable attachment of an additional function, such as antibodies for specific targeting. Thus, a prefunctionalized carrier where only the outer functionality needs to be replaced without disturbing the underlying structure could be created

    Specific Uptake of Lipid-Antibody-Functionalized LbL Microcarriers by Cells

    No full text
    The modular construction of Layer-by-Layer biopolymer microcarriers facilitates a highly specific design of drug delivery systems. A supported lipid bilayer (SLB) contributes to biocompatibility and protection of sensitive active agents. The addition of a lipid anchor equipped with PEG (shielding from opsonins) and biotin (attachment of exchangeable outer functional molecules) enhances the microcarrier functionality even more. However, a homogeneously assembled supported lipid bilayer is a prerequisite for a specific binding of functional components. Our investigations show that a tightly packed SLB improves the efficiency of functional components attached to the microcarrier’s surface, as illustrated with specific antibodies in cellular application. Only a low quantity of antibodies is needed to obtain improved cellular uptake rates independent from cell type as compared to an antibody-functionalized loosely packed lipid bilayer or directly assembled antibody onto the multilayer. A fast disassembly of the lipid bilayer within endolysosomes exposing the underlying drug delivering multilayer structure demonstrates the suitability of LbL-microcarriers as a multifunctional drug delivery system

    Reversible Fusion Proteins as a Tool to Enhance Uptake of Virus-Functionalized LbL Microcarriers

    No full text
    For the efficient treatment of an increasing number of diseases the development of new therapeutics as well as novel drug delivery systems is essential. Such drug delivery systems (DDS) must not only consider biodegradability and protective packaging but must also target and control the release of active substances, which is one of the most important points in DDS application. We highlight the improvement of these key aspects, the increased interaction rate of Layer-by-Layer (LbL) designed microcarriers as a promising DDS after functionalization with vesicular stomatitis virus (VSV). We make use of the unique conformational reversibility of the fusion protein of VSV as a surface functionalization of LbL microcarriers. This reversibility allows for VSV to be used both as a tool for assembly onto the DDS and as an initiator for an efficient cellular uptake. We could show that the evolutionary optimized viral fusion machinery can be successfully combined with a biophysical DDS for optimization of its cellular interaction

    Influence of Growth Characteristics of Induced Pluripotent Stem Cells on Their Uptake Efficiency for Layer-by-Layer Microcarriers

    No full text
    Induced pluripotent stem cells (iPSCs) have the ability to differentiate into any specialized somatic cell type, which makes them an attractive tool for a wide variety of scientific approaches, including regenerative medicine. However, their pluripotent state and their growth in compact colonies render them difficult to access and, therefore, restrict delivery of specific agents for cell manipulation. Thus, our investigation focus was set on the evaluation of the capability of layer-by-layer (LbL) designed microcarriers to serve as a potential drug delivery system to iPSCs, as they offer several appealing advantages. Most notably, these carriers allow for the transport of active agents in a protected environment and for a rather specific delivery through surface modifications. As we could show, charge and mode of LbL carrier application as well as the size of the iPSC colonies determine the interaction with and the uptake rate by iPSCs. None of the examined conditions had an influence on iPSC colony properties such as colony morphology and size or maintenance of pluripotent properties. An overall interaction rate of LbL carriers with iPSCs of up to 20% was achieved. Those data emphasize the applicability of LbL carriers for stem cell research. Additionally, the potential use of LbL carriers as a promising delivery tool for iPSCs was contrasted to viral particles and liposomes. The identified differences among those delivery tools have substantiated our major conclusion that LbL carrier uptake rate is influenced by characteristic features of the iPSC colonies (most notably colony size) in addition to their surface charges
    corecore