11 research outputs found

    Thermal acclimation increases the stability of a predator-prey interaction in warmer environments.

    Get PDF
    Global warming over the next century is likely to alter the energy demands of consumers and thus the strengths of their interactions with their resources. The subsequent cascading effects on population biomasses could have profound effects on food web stability. One key mechanism by which organisms can cope with a changing environment is phenotypic plasticity, such as acclimation to warmer conditions through reversible changes in their physiology. Here, we measured metabolic rates and functional responses in laboratory experiments for a widespread predator-prey pair of freshwater invertebrates, sampled from across a natural stream temperature gradient in Iceland (4-18℃). This enabled us to parameterize a Rosenzweig-MacArthur population dynamical model to study the effect of thermal acclimation on the persistence of the predator-prey pairs in response to warming. Acclimation to higher temperatures either had neutral effects or reduced the thermal sensitivity of both metabolic and feeding rates for the predator, increasing its energetic efficiency. This resulted in greater stability of population dynamics, as acclimation to higher temperatures increased the biomass of both predator and prey populations with warming. These findings indicate that phenotypic plasticity can act as a buffer against the impacts of environmental warming. As a consequence, predator-prey interactions between ectotherms may be less sensitive to future warming than previously expected, but this requires further investigation across a broader range of interacting species

    Terrestrial runoff may reduce microbenthic net community productivity by increasing turbidity: a Mediterranean coastal lagoon mesocosm experiment

    No full text
    International audienceTerrestrial runoff into aquatic ecosystems may have both stimulatory and inhibitory effects, due to nutrient subsidies and increased light attenuation. To disentangle the effects of runoff on microbenthos, we added soil to coastal mesocosms and manipulated substrate depth. To test if fish interacted with runoff effects, we manipulated fish presence. Soil decreased microphytobenthic chlorophyll-a per area and per carbon (C) unit, increased microbenthic phosphorous (P), and reduced microbenthic nitrogen (N) content. Depth had a strong effect on the microbenthos, with shallow substrates exhibiting greater microbenthic net ecosystem production, gross primary production, and community respiration than deep substrates. Over time, micobenthic algae compensated for deeper substrate depth through increased chlorophyll-a synthesis, but despite algal shade compensation, the soil treatment still appeared to reduce the depth where microbenthos switched from net autotrophy to net heterotrophy. Fish interacted with soil in affecting microbenthic nutrient composition. Fish presence reduced microbenthic C/P ratios only in the no soil treatment, probably since soil nutrients masked the positive effects of fish excreta on microbenthos. Soil reduced microbenthic N/P ratios only in the absence of fish. Our study demonstrates the importance of light for the composition and productivity of microbenthos but finds little evidence for positive runoff subsidy effects

    Improving diagnosis and risk stratification across the ejection fraction spectrum: the Maastricht Cardiomyopathy registry

    No full text
    Aims Heart failure (HF) represents a clinical syndrome resulting from different aetiologies and degrees of heart diseases. Among these, a key role is played by primary heart muscle disease (cardiomyopathies), which are the combination of multifactorial environmental insults in the presence or absence of a known genetic predisposition. The aim of the Maastricht Cardiomyopathy registry (mCMP-registry; NCT04976348) is to improve (early) diagnosis, risk stratification, and management of cardiomyopathy phenotypes beyond the limits of left ventricular ejection fraction (LVEF).Methods and results The mCMP-registry is an investigator-initiated prospective registry including patient characteristics, diagnostic measurements performed as part of routine clinical care, treatment information, sequential biobanking, quality of life and economic impact assessment, and regular follow-up. All subjects aged >= 16 years referred to the cardiology department of the Maastricht University Medical Center (MUMC+) for HF-like symptoms or cardiac screening for cardiomyopathies are eligible for inclusion, irrespective of phenotype or underlying causes. Informed consented subjects will be followed up for 15 years. Two central approaches will be used to answer the research questions related to the aims of this registry: (i) a data-driven approach to predict clinical outcome and response to therapy and to identify clusters of patients who share underlying pathophysiological processes; and (ii) a hypothesis-driven approach in which clinical parameters are tested for their (incremental) diagnostic, prognostic, or therapeutic value. The study allows other centres to easily join this initiative, which will further boost research within this field.Conclusions The broad inclusion criteria, systematic routine clinical care data-collection, extensive study-related data-collection, sequential biobanking, and multi-disciplinary approach gives the mCMP-registry a unique opportunity to improve diagnosis, risk stratification, and management of HF and (early) cardiomyopathy phenotypes beyond the LVEF limits

    Improving diagnosis and risk stratification across the ejection fraction spectrum: the Maastricht Cardiomyopathy registry

    No full text
    Aims Heart failure (HF) represents a clinical syndrome resulting from different aetiologies and degrees of heart diseases. Among these, a key role is played by primary heart muscle disease (cardiomyopathies), which are the combination of multifactorial environmental insults in the presence or absence of a known genetic predisposition. The aim of the Maastricht Cardiomyopathy registry (mCMP-registry; NCT04976348) is to improve (early) diagnosis, risk stratification, and management of cardiomyopathy phenotypes beyond the limits of left ventricular ejection fraction (LVEF).Methods and results The mCMP-registry is an investigator-initiated prospective registry including patient characteristics, diagnostic measurements performed as part of routine clinical care, treatment information, sequential biobanking, quality of life and economic impact assessment, and regular follow-up. All subjects aged >= 16 years referred to the cardiology department of the Maastricht University Medical Center (MUMC+) for HF-like symptoms or cardiac screening for cardiomyopathies are eligible for inclusion, irrespective of phenotype or underlying causes. Informed consented subjects will be followed up for 15 years. Two central approaches will be used to answer the research questions related to the aims of this registry: (i) a data-driven approach to predict clinical outcome and response to therapy and to identify clusters of patients who share underlying pathophysiological processes; and (ii) a hypothesis-driven approach in which clinical parameters are tested for their (incremental) diagnostic, prognostic, or therapeutic value. The study allows other centres to easily join this initiative, which will further boost research within this field.Conclusions The broad inclusion criteria, systematic routine clinical care data-collection, extensive study-related data-collection, sequential biobanking, and multi-disciplinary approach gives the mCMP-registry a unique opportunity to improve diagnosis, risk stratification, and management of HF and (early) cardiomyopathy phenotypes beyond the LVEF limits
    corecore