538 research outputs found
Fundamental Vibrational Transitions of HCl Detected in CRL 2136
We would like to understand the chemistry of dense clouds and their hot cores
more quantitatively by obtaining more complete knowledge of the chemical
species present in them. We have obtained high-resolution infrared absorption
spectroscopy at 3-4 um toward the bright infrared source CRL 2136. The
fundamental vibration-rotation band of HCl has been detected within a dense
cloud for the first time. The HCl is probably located in the warm compact
circumstellar envelope or disk of CRL 2136. The fractional abundance of HCl is
(4.9-8.7)e-8, indicating that approximately 20 % of the elemental chlorine is
in gaseous HCl. The kinetic temperature of the absorbing gas is 250 K, half the
value determined from infrared spectroscopy of 13CO and water. The percentage
of chlorine in HCl is approximately that expected for gas at this temperature.
The reason for the difference in temperatures between the various molecular
species is unknown.Comment: 6 pages, 3 figures, A&A in pres
Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy
Observationally, supernovae (SNe) are divided into subclasses pertaining to
their distinct characteristics. This diversity reflects the diversity in the
progenitor stars. It is not entirely clear how different evolutionary paths
leading massive stars to become a SN are governed by fundamental parameters
such as progenitor initial mass and metallicity. This paper places constraints
on progenitor initial mass and metallicity in distinct core-collapse SN
subclasses, through a study of the parent stellar populations at the explosion
sites. Integral field spectroscopy (IFS) of 83 nearby SN explosion sites with a
median distance of 18 Mpc has been collected and analysed, enabling detection
and spectral extraction of the parent stellar population of SN progenitors.
From the parent stellar population spectrum, the initial mass and metallicity
of the coeval progenitor are derived by means of comparison to simple stellar
population models and strong-line methods. Additionally, near-infrared IFS was
employed to characterise the star formation history at the explosion sites. No
significant metallicity differences are observed among distinct SN types. The
typical progenitor mass is found to be highest for SN Ic, followed by type Ib,
then types IIb and II. SN IIn is the least associated with young stellar
populations and thus massive progenitors. However, statistically significant
differences in progenitor initial mass are observed only when comparing SNe IIn
with other subclasses. Stripped-envelope SN progenitors with initial mass
estimate lower than 25~ are found; these are thought to be the result
of binary progenitors. Confirming previous studies, these results support the
notion that core-collapse SN progenitors cannot arise from single-star channel
only, and both single and binary channels are at play in the production of
core-collapse SNe. [ABRIDGED]Comment: 18 pages, 10 figures, accepted to A&
Distinguishing between optical coherent states with imperfect detection
Several proposed techniques for distinguishing between optical coherent
states are analyzed under a physically realistic model of photodetection.
Quantum error probabilities are derived for the Kennedy receiver, the Dolinar
receiver and the unitary rotation scheme proposed by Sasaki and Hirota for
sub-unity detector efficiency. Monte carlo simulations are performed to assess
the effects of detector dark counts, dead time, signal processing bandwidth and
phase noise in the communication channel. The feedback strategy employed by the
Dolinar receiver is found to achieve the Helstrom bound for sub-unity detection
efficiency and to provide robustness to these other detector imperfections
making it more attractive for laboratory implementation than previously
believed
Recommended from our members
Low density molecular gas in the galaxy
The distributions and physical conditions in molecular gas in the interstellar medium have been investigated in both the Galaxy and towards external galaxies. For example, Galactic plane surveys in the CO J =1-0 line with the Columbia 1.2-m telescope and with the Five College Radio Astronomy Observatory (FCRAO) 14-m telescopes have been able to trace spiral arms more clearly than HI surveys have been able to reveal, and indicate that most of molecular mass is contained in Giant Molecular Clouds (GMCs). Extensive maps of the whole Milky Way showed two prominent features, the 4-kpc molecular ring and the Galactic center. The physical conditions in the Galaxy have been studied by comparing the intensity of CO J =1-0 line with those of other lines, e.g., 13CO J =1-0, higher J transitions of CO, and dense gas tracers such as HCO+, CS, and HCN.
Previous studies were however strongly biased towards regions where CO emission was known to be intense. The radial distribution of molecular hydrogen shows that most of the H2 gas which is indirectly traced by observations of its associated CO emission, originates from the inner Galaxy (Dame 1993). Extending outwards from a galacto-centric distance of ~7 kpc, the H2 mass surface density decreases dramatically, and HI dominates over H2 in the outer Galaxy. What are physical conditions of molecular gas where the CO emission is relatively weak, and can we really trace all of the molecular gas through obervations of CO? These kinds of problems have not been solved yet, but are addressed in our study
Coherence between oscillations in the cardiorespiratory system and tissue oxygen index in muscle recovering from intensive exercise in humans
It has been shown that the tissue oxygen index (TOI) measured by near-infrared spectroscopy oscillates at very low frequencies during recovery after exercise and that this oscillation is derived from interactions among biochemical substances involved in oxidative metabolism in skeletal muscle. As a further step, we examined whether TOI in muscle interacts through oscillation with factors related to oxygen in the cardiorespiratory system. For this examination, coherence and phase difference between the TOI in the vastus lateralis and heart rate (HR) and between TOI and arterial oxygen saturation (SpO2) were sequentially determined during recovery (2–60 min) after severe cycle exercise with a workload of 7.5% of body weight for 20 s. Significant coherence between TOI and HR was obtained in the very low-frequency band (approximate range: 0.002–0.03 Hz) and in the low-frequency band (approximate range: 0.06–0.12 Hz). The phase difference was negative in the low-frequency band and positive in the very low-frequency band. The coherence between TOI and SpO2 was significant in the very low-frequency band. The phase difference was negative. There were no sequential changes in these coherences and phase differences. The results suggest that TOI in skeletal muscle interrelates with factors related to the heart and lungs
Modelling of molecular genetic systems in bacterial cell 45 AROMATIC AMINO ACID BIOSYNTHESIS IN ESCHERICHIA COLI: GENERALIZED HILL FUNCTION MODEL OF THE TRYPTOPHAN- SENSITIVE 3-DEOXY-D-ARABINO- HEPTULOSONATE-7-PHOSPHATE SYNTHASE REACTION DEMONSTRATE COMPL
SUMMARY Motivation: Development of an in silico cell as a computer resource for simulation and analysis of processes within living cells is an urgent task of systems biology and computational biology. Results: By using the GeneNet technology, we reproduced the gene network of the regulation of aromatic amino acid biosynthesis in the E. coli cell. Mathematical models were constructed by the method of generalized Hill functions. The models describe the efficiency of enzymatic systems and regulation of expression of related genes. Mathematical model of the enzyme tryptophan-sensitive 3-deoxy-d-arabinoheptulosonate-7-phosphate synthase reaction demonstrate complicated mechanism. Availability: Models are available on request. The diagram of the gene network regulating aromatic amino acid biosynthesis in E. coli is available through the GeneNet viewer a
The Cassiopeia A Supernova was of Type IIB
Cassiopeia A is one of the youngest supernova remnants known in the Milky Way
and a unique laboratory for supernova physics. We present an optical spectrum
of the Cassiopeia A supernova near maximum brightness, obtained from
observations of a scattered light echo - more than three centuries after the
direct light of the explosion swept past Earth. The spectrum shows that
Cassiopeia A was a type IIb supernova and originated from the collapse of the
helium core of a red supergiant that had lost most of its hydrogen envelope
prior to exploding. Our finding concludes a longstanding debate on the
Cassiopeia A progenitor and provides new insight into supernova physics by
linking the properties of the explosion to the wealth of knowledge about its
remnant.Comment: 17 pages, 4 figures, including online supporting material; to be
published in Science on 30 May 200
- …