99 research outputs found

    Inactivation of Factor VIIa by Antithrombin In Vitro, Ex Vivo and In Vivo: Role of Tissue Factor and Endothelial Cell Protein C Receptor

    Get PDF
    Recent studies have suggested that antithrombin (AT) could act as a significant physiologic regulator of FVIIa. However, in vitro studies showed that AT could inhibit FVIIa effectively only when it was bound to tissue factor (TF). Circulating blood is known to contain only traces of TF, at best. FVIIa also binds endothelial cell protein C receptor (EPCR), but the role of EPCR on FVIIa inactivation by AT is unknown. The present study was designed to investigate the role of TF and EPCR in inactivation of FVIIa by AT in vivo. Low human TF mice (low TF, ∼1% expression of the mouse TF level) and high human TF mice (HTF, ∼100% of the mouse TF level) were injected with human rFVIIa (120 µg kg−1 body weight) via the tail vein. At varying time intervals following rFVIIa administration, blood was collected to measure FVIIa-AT complex and rFVIIa antigen levels in the plasma. Despite the large difference in TF expression in the mice, HTF mice generated only 40–50% more of FVIIa-AT complex as compared to low TF mice. Increasing the concentration of TF in vivo in HTF mice by LPS injection increased the levels of FVIIa-AT complexes by about 25%. No significant differences were found in FVIIa-AT levels among wild-type, EPCR-deficient, and EPCR-overexpressing mice. The levels of FVIIa-AT complex formed in vitro and ex vivo were much lower than that was found in vivo. In summary, our results suggest that traces of TF that may be present in circulating blood or extravascular TF that is transiently exposed during normal vessel damage contributes to inactivation of FVIIa by AT in circulation. However, TF’s role in AT inactivation of FVIIa appears to be minor and other factor(s) present in plasma, on blood cells or vascular endothelium may play a predominant role in this process

    Role of Tissue Factor in Mycobacterium tuberculosis-Induced Inflammation and Disease Pathogenesis

    Get PDF
    Tuberculosis (TB) is a chronic lung infectious disease characterized by severe inflammation and lung granulomatous lesion formation. Clinical manifestations of TB include hypercoagulable states and thrombotic complications. We previously showed that Mycobacterium tuberculosis (M.tb) infection induces tissue factor (TF) expression in macrophages in vitro. TF plays a key role in coagulation and inflammation. In the present study, we investigated the role of TF in M.tb-induced inflammatory responses, mycobacterial growth in the lung and dissemination to other organs. Wild-type C57BL/6 and transgenic mice expressing human TF, either very low levels (low TF) or near to the level of wild-type (HTF), in place of murine TF were infected with M.tb via aerosol exposure. Levels of TF expression, proinflammatory cytokines and thrombin-antithrombin complexes were measured post M.tb infection and mycobacterial burden in the tissue homogenates were evaluated. Our results showed that M.tb infection did not increase the overall TF expression in lungs. However, macrophages in the granulomatous lung lesions in all M.tb-infected mice, including low TF mice, showed increased levels of TF expression. Conspicuous fibrin deposition in the granuloma was detected in wild-type and HTF mice but not in low TF mice. M.tb infection significantly increased expression levels of cytokines IFN-γ, TNF-α, IL-6 and IL-1ß in lung tissues. However, no significant differences were found in proinflammatory cytokines among the three experimental groups. Mycobacterial burden in lungs and dissemination into spleen and liver were essentially similar in all three genotypes. Our data indicate, in contrast to that observed in acute bacterial infections, that TF-mediated coagulation and/or signaling does not appear to contribute to the host-defense in experimental tuberculosis

    Sharing Tissue Factor

    No full text

    Binding of factor VIIa to tissue factor induces alterations in gene expression in human fibroblast cells: Up-regulation of poly(A) polymerase

    No full text
    Tissue factor (TF) is the cellular receptor for an activated form of clotting factor VII (VIIa) and the binding of factor VII(a) to TF initiates the coagulation cascade. Sequence and structural patterns extracted from a global alignment of TF confers homology with interferon receptors of the cytokine receptor super family. Several recent studies suggested that TF could function as a genuine signal transducing receptor. However, it is unknown which biological function(s) of cells are altered upon the ligand, VIIa, binding to TF. In the present study, we examined the effect of VIIa binding to cell surface TF on cellular gene expression in fibroblasts. Differential mRNA display PCR technique was used to identify transcriptional changes in fibroblasts upon VIIa binding to TF. The display showed that VIIa binding to TF either up or down-regulated several mRNA species. The differential expression of one such transcript, VIIa-induced up-regulation, was confirmed by Northern blot analysis. Isolation of a full-length cDNA corresponding to the differentially expressed transcript revealed that VIIa-up-regulated gene was poly(A) polymerase. Northern blot analysis of various carcinomas and normal human tissues revealed an over expression of PAP in cancer tissues. Enhanced expression of PAP upon VIIa binding to tumor cell TF may potentially play an important role in tumor metastasis

    Effect of Wine Phenolics on Cytokine-Induced C-Reactive Protein Expression

    No full text
    Background: Elevation of C-reactive protein (CRP) levels in blood was recognized as one of the cardiac disease risk factors. Consumption of wine is shown to reduce the risk from heart disease and improve longevity. Objectives: In the present study, we evaluated the effect of various wine polyphenolic compounds and several active synthetic derivatives of resveratrol on the inflammatory cytokines (IL-1β+IL-6)-induced CRP expression in Hep3B cells. Results: Among the wine phenolics tested, quercetin and resveratrol, in a dose-dependent manner, suppressed cytokine-induced CRP expression. Two of the synthetic derivatives of resveratrol, R3 and 7b, elicited a fiftyfold higher suppressive effect compared with resveratrol. The inhibitory effects of resveratrol and its derivatives on CRP expression were at the level of mRNA production. Investigation of signaling pathways showed that the cytokines induced the phosphorylation of p38 and p44/42 MAP kinases. Inhibitors of p38 and p44/42 mitogen-activated protein kinase (MAPK) activation inhibited CRP expression, implicating the involvement of both pathways in cytokine-induced CRP expression. These data revealed a previously unrecognized role of the p44/42 MAPK signaling pathway in CRP expression. Wine polyphenolics or the synthetic compounds of resveratrol did not affect cytokine-activated phosphorylation of these MAPKs. Conclusions: Wine phenolics inhibit CRP expression; however, to do so, they do not utilize the MAPK pathways

    Cellular localization and trafficking of tissue factor

    No full text
    Tissue factor (TF) is the cellular receptor for clotting factor VIIa (FVIIa). The formation of TF-FVIIa complexes on cell surfaces triggers the activation of coagulation cascade and cell signaling. In the present study, we characterized the subcellular distribution of TF and its transport in fibroblasts by dual immunofluorescence confocal microscopy and biochemical methods. Our data show that a majority of TF resides in various intracellular compartments, predominantly in the Golgi. Tissue factor at the cell surface is localized in cholesterol-rich lipid rafts and extensively colocalized with caveolin-1. FVIIa binding to TF induces the internalization of TF. Of interest, we found that TF-FVIIa complex formation at the cell surface leads to TF mobilization from the Golgi with a resultant increase in TF expression at the cell surface. This process is dependent on FVIIa protease activity. Overall, the present data suggest a novel mechanism for TF expression at the cell surface by FVIIa. This mechanism could play an important role in hemostasis in response to vascular injury by increasing TF activity where and when it is needed

    Mycobacterium tuberculosis infection and tissue factor expression in macrophages.

    Get PDF
    A number of earlier studies reported the occurrence of thrombotic complications, particularly disseminated intravascular coagulation and deep vein thrombosis, in tuberculosis (TB) patients. The aberrant expression of tissue factor (TF), the primary activator of coagulation cascade, is known to be responsible for thrombotic disorders in many diseases including bacterial infections. Further, expression of TF by cells of the monocyte/macrophage lineage is also shown to contribute to the development and progression of local and systemic inflammatory reactions. In the present study, we have investigated whether Mycobacterium tuberculosis (Mtb) infection induces TF expression in macrophages, and various host and pathogenic factors responsible for TF expression. We have tested the effect of live virulent Mtb H37Rv, gamma-irradiated Mtb H37Rv (γ-Mtb) and various components derived from Mtb H37Rv on TF expression in macrophages. The data presented in the manuscript show that both live virulent Mtb and γ-Mtb treatments markedly increased TF activity in macrophages, predominantly in the CD14(+) macrophages. Detailed studies using γ-Mtb showed that the increased TF activity in macrophages following Mtb treatment is the result of TF transcriptional activation. The signaling pathways of TF induction by Mtb appears to be distinct from that of LPS-induced TF expression. Mtb-mediated TF expression is dependent on cooperation of CD14/TLR2/TLR4 and probably yet another unknown receptor/cofactor. Mtb cell wall core components, mycolyl arabinogalactan peptidoglycan (mAGP), phosphatidylinositol mannoside-6 (PIM6) and lipomannan (LM) were identified as factors responsible for induction of TF in the order of mAGP>PIM6>LM. A direct contact between bacteria and macrophage and not Mtb-released soluble factors is critical for TF induction by Mtb. In summary, our data show that Mtb induces TF expression in macrophages and Mtb signaling pathways that elicit TF induction require cooperation of multiple receptors, co-receptors/co-factors including Toll-like receptors. The importance of TF in granuloma formation and containment of Mtb is discussed
    • …
    corecore