6 research outputs found

    Sedimentary environment of the early pleistocene gravels of the edfu formation from the saqqara archaeological site (Egypt) – preliminary results

    No full text
    A gravel horizon is preserved in several locations within the world-wide known archaeological site in Saqqara (northern Egypt). It is characterized by a variable thickness, composed of coarse, quartz, quartzitic and flint pebbles, and considered to correspond to gravels of the Edfu Formation, deposited in the Early Pleistocene by the early phase of the Nile development (Protonile Phase). This relatively short (ca. 200 ka) and at the same time very dynamic period of Protonile activity during the Edfu Pluvial is one of the most poorly recognized hydrological-climatic episodes of the Quaternary in north-eastern Africa. This paper is focused on the preliminary sedimentological-petrographic characteristics of these deposits and an attempt to indicate their source areas as well as mechanisms of transportation and deposition in the context of Pleistocene pluvial episodes

    Evidence of Late Cretaceous/Cenozoic strike-slip faulting within the late Palaeozoic Holy Cross Mts. Fold Belt, Poland: Józefka releasing stepover

    No full text
    The aim of this study was to reconstruct the location mechanism of a Triassic sandstone wedge within folded Palaeozoic rocks. A vertically oriented Buntsandstein succession (Lower Triassic) from Józefka Quarry (Holy Cross Mountains, central Poland), steeply wedged within folded Devonian carbonates, is recognised as an effect of normal faulting within a releasing stepover. The sandstone succession, corresponding to the Zagnańsk Formation in the local lithostratigraphic scheme, is represented by two complexes, interpreted as deposits of a sand-dominated alluvial plain (older complex), and coarse-grained sands and gravels of a braided river system (younger complex). The sandstone complex was primarily formed as the lowermost part of the several kilometres thick Mesozoic cover of the Holy Cross Mountains Fold Belt (HCFB), later eroded as a result of the Late Cretaceous/Paleogene uplift of the area. Tectonic analysis of the present-day position of the deformed sandstone succession shows that it is fault-bounded by a system of strike-slip and normal faults, which we interpret as a releasing stepover. Accordingly, the formation of the stepover in the central part of the late Palaeozoic HCFB is evidence of a significant role of strike-slip faulting within this tectonic unit during Late Cretaceous/Paleogene times. The faulting was probably triggered by reactivation of the terminal Palaeozoic strike-slip fault pattern along the western border of the Teisseyre–Tornquist Zone

    The intramontane Orava Basin - evidence of large-scale Miocene to Quaternary sinistral wrenching in the Alpine-Carpathian-Pannonian area

    No full text
    The Carpathian Orava Basin is a tectonic structure filled with Neogene and Quaternary deposits superimposed on the collision zone between the ALCAPA and European plates. Tectonic features of the south-eastern margin of the Orava Basin and the adjoining part of the fore-arc Central Carpathian Palaeogene Basin were studied. Field observations of mesoscopic structures, analyses of digital elevation models and geological maps, supplemented with electrical resistivity tomography surveys were performed. Particular attention was paid to joint network analysis. The NE-SW-trending Krowiarki and Hruštinka-Biela Orava sinistral fault zones were recognized as key tectonic features that influenced the Orava Basin development. They constitute the north-eastern part of a larger Mur-Mürz-Žilina fault system that separates the Western Carpathians from the Eastern Alps. The interaction of these sinistral fault zones with the older tectonic structures of the collision zone caused the initiation and further development of the Orava Basin as a strike-slip-related basin. The Krowiarki Fault Zone subdivides areas with a different deformation pattern within the sediments of the Central Carpathian Palaeogene Basin and was active at least from the time of cessation of its sedimentation in the early Miocene. Comparison of structural data with the recent tectonic stress field, earthquake focal mechanisms and GPS measurements allows us to conclude that the Krowiarki Fault Zone shows a stable general pattern of tectonic activity for more than the last 20 myr and is presently still active

    Hydrothermally induced diagenesis: Evidence from shallow marine-deltaic sediments, Wilhelmøya, Svalbard

    No full text
    Sedimentary basins containing igneous intrusions within sedimentary reservoir units represent an important risk in petroleum exploration. The Upper Triassic to Lower Jurassic sediments at Wilhelmøya (Svalbard) contains reservoir heterogeneity as a result of sill emplacement and represent a unique case study to better understand the effect of magmatic intrusions on the general burial diagenesis of siliciclastic sediments. Sills develop contact metamorphic aureoles by conduction as presented in many earlier studies. However, there is significant impact of localized hydrothermal circulation systems affecting reservoir sediments at considerable distance from the sill intrusions. Dolerite sill intrusions in the studied area are of limited vertical extent (∼12 m thick), but created localized hydrothermal convection cells affecting sediments at considerable distance (more than five times the thickness of the sill) from the intrusions. We present evidence that the sedimentary sequence can be divided into two units: (1) the bulk poorly lithified sediment with a maximum burial temperature much lower than 60–70 °C, and (2) thinner intervals outside the contact zone that have experienced hydrothermal temperatures (around 140 °C). The main diagenetic alteration associated with normal burial diagenesis is minor mechanical plastic deformation of ductile grains such as mica. Mineral grain contacts show no evidence of pressure dissolution and the vitrinite reflectance suggests a maximum temperature of ∼40 °C. Contrary to this, part of the sediment, preferentially along calcite cemented flow baffles, show evidence of hydrothermal alteration. These hydrothermally altered sediment sections are characterized by recrystallized carbonate cemented intervals. Further, the hydrothermal solutions have resulted in localized sericitization (illitization) of feldspars, albitization of both K-feldspar and plagioclase and the formation of fibrous illite nucleated on kaolinite. These observations suggest hydrothermal alteration at T > 120–140 °C at distances considerably further away than expected from sill heat dissipation by conduction only, which commonly affect sediments about twice the thickness of the sill intrusion. We propose that carbonate-cemented sections acted as flow baffles already during the hydrothermal fluid mobility and controlled the migration pathways of the buoyant hot fluids. Significant hydrothermally induced diagenetic alterations affecting the porosity and hence reservoir quality was not noted in the noncarbonate-cemented reservoir intervals. Keywords: Diagenesis, Sill intrusions, Hydrothermal convection cells, Carbonate cement, Sericitization of feldspar

    New data on the continental deposits from the Cao Bang Basin (Cao Bang-Tien Yen Fault Zone, NE Vietnam) – Biostratigraphy, provenance and facies pattern

    No full text
    The Cao Bang Basin is the northernmost of the basins related to the Cao Bang-Tien Yen Fault Zone in northern Vietnam. The basin is filled with a thick series of continental deposits. However, the exact age of the sedimen-tary basin infill has been under discussion for a long time. Because of new published data, the authors have decided to revisit this basin. Palynological data has allowed us to assign the Cao Bang Basin infill to the Lower Oligocene PC1 complex of the Shangcun Fm. (southern China). Among the saccate grains of gymnosperms, the domination of Cathaya and Pinus was observed, whereas angiosperms are represented by Carya, Celtis, Hammamelidaceae, Ulmus and also Pterocarya, Quercus, the Castanea–Castanopsis–Lithocarpus group, and the Loranthaceae. Among pteridophytes occur Laevigatosporites, Osmundaceae, and Pteris. The sedimentolog-ical features of the Cao Bang Basin are distinct from those of other basins from the Cao Bang-Tien Yen Fault Zone. The basin is filled with a wide variety of clastic deposits, from some of coarse-grained, alluvial-fan origin, through sandy beds of fluvial origin up to fine, organic-rich lacustrine deposits. The coarse-grained lithofacies are built of clasts derived mainly from local sources. The sandstones from the basin equally are submature or immature. They contain a lot of lithoclasts, the composition of which depends on the sample location within the basin. The potential source area is composed of older sedimentary units and of granitic rocks. The geochemical samples studied reflect the geochemical composition of silicic source rocks with only a minor contribution of basic components. The succession that fills the basin is interpreted as a typical fill for relatively long-lasting evolving half-graben or strike-slip basins. Moreover, the basin is partly occupied by a subsequent present-day sedimentary basin of Quaternary age
    corecore