921 research outputs found

    Use of a Simulator to Objectively Distinguish Behaviors Between Low-Risk and High-Risk Drivers

    Get PDF
    The objective of this study was to validate behavioral differences between two groups of drivers through the use of a driving simulator. Controlled experiments in a driving simulator were used to gather objective and subjective evidence on how drivers reacted to roadway objects and handled various hazardous situations. Low-risk, more experienced drivers were more aware of the mental demands of having to remember and later recall a list of items when compared to high-risk, less experienced drivers. Outcomes of the study may potentially serve as the foundation for a training program that will aim to transfer risk assessment strategies from low-risk drivers to high-risk drivers

    Eisosome ultrastructure and evolution in fungi, microalgae, and lichens

    Get PDF
    Eisosomes are among the few remaining eukaryotic cellular differentations that lack a defined function(s). These trough-shaped invaginations of the plasma membrane have largely been studied in Saccharomyces cerevisiae, in which their associated proteins, including two BAR domain proteins, have been identified, and homologues have been found throughout the fungal radiation. Using quick-freeze deep-etch electron microscopy to generate high-resolution replicas of membrane fracture faces without the use of chemical fixation, we report that eisosomes are also present in a subset of red and green microalgae as well as in the cysts of the ciliate Euplotes. Eisosome assembly is closely correlated with both the presence and the nature of cell walls. Microalgal eisosomes vary extensively in topology and internal organization. Unlike fungi, their convex fracture faces can carry lineage-specific arrays of intramembranous particles, and their concave fracture faces usually display fine striations, also seen in fungi, that are pitched at lineage-specific angles and, in some cases, adopt a broad-banded patterning. The conserved genes that encode fungal eisosome-associated proteins are not found in sequenced algal genomes, but we identified genes encoding two algal lineage-specific families of predicted BAR domain proteins, called Green-BAR and Red-BAR, that are candidate eisosome organizers. We propose a model for eisosome formation wherein (i) positively charged recognition patches first establish contact with target membrane regions and (ii) a (partial) unwinding of the coiled-coil conformation of the BAR domains then allows interactions between the hydrophobic faces of their amphipathic helices and the lipid phase of the inner membrane leaflet, generating the striated patterns

    Ionic polarization-induced current-voltage hysteresis in ch3nh3pbx3 perovskite solar cells

    Get PDF
    CH3NH3PbX3 (MAPbX3) perovskites have attracted considerable attention as absorber materials for solar light harvesting, reaching solar to power conversion efficiencies above 20%. In spite of the rapid evolution of the efficiencies, the understanding of basic properties of these semiconductors is still ongoing. One phenomenon with so far unclear origin is the so-called hysteresis in the current–voltage characteristics of these solar cells. Here we investigate the origin of this phenomenon with a combined experimental and computational approach. Experimentally the activation energy for the hysteretic process is determined and compared with the computational results. First-principles simulations show that the timescale for MAþ rotation excludes a MA-related ferroelectric effect as possible origin for the observed hysteresis. On the other hand, the computationally determined activation energies for halide ion (vacancy) migration are in excellent agreement with the experimentally determined values, suggesting that the migration of this species causes the observed hysteretic behaviour of these solar cells

    The role of aluminium content in the control of the morphology of fly ash based hierarchical zeolite X

    Get PDF
    >Magister Scientiae - MScCoal is the main source of electricity in South Africa, the combustion of which produces a large amount of waste (coal fly ash) annually. The large-scale generation of coal fly ash places major strain on landfills and the material is toxic in nature. The high silicon and aluminium content in fly ash makes it a suitable starting material for zeolite synthesis. Utilisation of fly ash as a starting material for zeolite synthesis alleviates an environmental burden by converting a waste product to an industrially applicable material. In this study, hierarchical zeolite X was synthesised from coal fly ash via the fusion method. The clear fused fly ash (FFA) extract (with molar composition 0.12 Al·14.6 Na·1.00 Si·163 H₂O) served as the synthesis solution for hydrothermal treatment. The influence of synthesis parameters (such as Si/Al ratio, aluminium source, hydrothermal temperature and stirring) on hierarchical zeolite X formation was studied to determine the cause behind the formation of this material. Synthesised zeolites and starting materials (Arnot coal fly ash and fused fly ash) were characterised by various analytical techniques such as XRD and SEM-EDS to determine the phase purity, morphology and elemental composition (framework Si/Al ratio) of these materials. The synthesis of hierarchical zeolite X under hydrothermal conditions was found to be highly sensitive to the aluminium content of the synthesis solution. The hierarchical morphology of zeolite X was formed preferentially in relatively aluminium-deficient (i.e. high Si/Al ratio) synthesis environments under stirred hydrothermal conditions of 90 °C for 16 hours. In the case of sodium aluminate addition, octahedral shaped zeolite X crystals were formed in relatively low Si/Al ratio synthesis environments, which was attributed to the presence of excess sodium cation content in the synthesis solution. Selected hierarchical zeolites (D2 and E2) were characterised further to gain more insight into the properties of this material. HR-TEM and FTIR revealed that hierarchical zeolite D2 and E2 exhibited the typical structural features of zeolite X. Zeolite D2 and E2 contained both micropores and mesopores and had a high BET surface area of 338-362 m²/g. These zeolites also exhibited appreciable solid acidity (0.81-1.12 mmol H/g zeolite). These properties make hierarchical zeolite X a favourable material for application in catalysis or adsorption. Overall, the formation of zeolite X with hierarchical morphology was proposed to be linked to the presence of zeolite P1 structural units in the framework of the zeolite.National Research Foundatio

    Synthesis and characterisation of high silica zeolites with MOR and MFI framework type from South African coal fly ash.

    Get PDF
    Philosophiae Doctor - PhDHigh-silica zeolites are porous, aluminosilicate materials known for high thermal stability; making these materials favourable for application in various industrial processes involving elevated temperatures. The synthesis of zeolites from alternative feedstock such as coal fly ash has been investigated previously. Coal fly ash is a waste by-product of the coal combustion process, which is main source utilised for energy generation in South Africa. Coal fly ash is an ideal alternative feedstock for zeolites due to the large annual production as well as the rich mineral content (high in silicon and aluminium). Coal fly ash also contains a range of other elements which is known to result in environmental problems such as excessive land-use as well as air, soil, surface water and ground water pollution; including inorganic cations that may influence the zeolite crystallisation process. However, coal fly ash has successfully been utilised for the synthesis of a range of low-silica zeolites. High-silica zeolite synthesis from alternative feedstock has usually focused on the synthesis of zeolite ZSM-5. Furthermore, these synthesis routes commonly utilised additional silicon sources and/or a purification step by reflux treatment with a chelating agent to enhance the feedstock Si/Al ratio prior to crystallisation. This adds complexity to the conversion of coal fly ash to zeolite process, in terms of cost, energy and time

    Precision treatment of Singleton Merten syndrome with ruxolitinib: a case report.

    Get PDF
    BACKGROUND Singleton-Merten syndrome 1 (SGMRT1) is a rare type I interferonopathy caused by heterozygous mutations in the IFIH1 gene. IFIH1 encodes the pattern recognition receptor MDA5 which senses viral dsRNA and activates antiviral type I interferon (IFN) signaling. In SGMRT1, IFIH1 mutations confer a gain-of-function which causes overactivation of type I interferon (IFN) signaling leading to autoinflammation. CASE PRESENTATION We report the case of a nine year old child who initially presented with a slowly progressive decline of gross motor skill development and muscular weakness. At the age of five years, he developed osteoporosis, acro-osteolysis, alveolar bone loss and severe psoriasis. Whole exome sequencing revealed a pathogenic de novo IFIH1 mutation, confirming the diagnosis of SGMRT1. Consistent with constitutive type I interferon activation, patient blood cells exhibited a strong IFN signature as shown by marked up-regulation of IFN-stimulated genes. The patient was started on the Janus kinase (JAK) inhibitor, ruxolitinib, which inhibits signaling at the IFN-α/β receptor. Within days of treatment, psoriatic skin lesions resolved completely and the IFN signature normalized. Therapeutic efficacy was sustained and over the course muscular weakness, osteopenia and growth also improved. CONCLUSIONS JAK inhibition represents a valuable therapeutic option for patients with SGMRT1. Our findings also highlight the potential of a patient-tailored therapeutic approach based on pathogenetic insight

    Identification of small molecule inhibitors of pre-mRNA splicing

    Get PDF
    Background: There is a need for new small molecule pre-mRNA splicing inhibitors as biotools. Results: High throughput screening resulted in the identification of small molecule splicing inhibitors that are active in vitro and in cells. Conclusion: New small molecules for studying pre-mRNA splicing in vitro and in cells are identified. Significance: Small drug-like molecules are identified that modulate splicing in vitro and in cells. Eukaryotic pre-mRNA splicing is an essential step in gene expression for all genes that contain introns. In contrast to transcription and translation, few well characterized chemical inhibitors are available with which to dissect the splicing process, particularly in cells. Therefore, the identification of specific small molecules that either inhibit or modify pre-mRNA splicing would be valuable for research and potentially also for therapeutic applications. We have screened a highly curated library of 71,504 drug-like small molecules using a high throughput in vitro splicing assay. This identified 10 new compounds that both inhibit pre-mRNA splicing in vitro and modify splicing of endogenous pre-mRNA in cells. One of these splicing modulators, DDD00107587 (termed madrasin, i.e. 2-((7methoxy-4-methylquinazolin-2-yl)amino)-5,6-dimethylpyrimidin-4(3H)-one RNAsplicing inhibitor), was studied in more detail. Madrasin interferes with the early stages of spliceosome assembly and stalls spliceosome assembly at the A complex. Madrasin is cytotoxic at higher concentrations, although at lower concentrations it induces cell cycle arrest, promotes a specific reorganization of subnuclear protein localization, and modulates splicing of multiple pre-mRNAs in both HeLa and HEK293 cells
    • …
    corecore