5 research outputs found

    New standards for reducing gravity data: The North American gravity database

    Get PDF
    The North American gravity database as well as databases from Canada, Mexico, and the United States are being revised to improve their coverage, versatility, and accuracy. An important part of this effort is revising procedures for calculating gravity anomalies, taking into account our enhanced computational power, improved terrain databases and datums, and increased interest in more accurately defining long-wavelength anomaly components. Users of the databases may note minor differences between previous and revised database values as a result of these procedures. Generally, the differences do not impact the interpretation of local anomalies but do improve regional anomaly studies. The most striking revision is the use of the internationally accepted terrestrial ellipsoid for the height datum of gravity stations rather than the conventionally used geoid or sea level. Principal facts of gravity observations and anomalies based on both revised and previous procedures together with germane metadata will be available on an interactive Web-based data system as well as from national agencies and data centers. The use of the revised procedures is encouraged for gravity data reduction because of the widespread use of the global positioning system in gravity fieldwork and the need for increased accuracy and precision of anomalies and consistency with North American and national databases. Anomalies based on the revised standards should be preceded by the adjective “ellipsoidal” to differentiate anomalies calculated using heights with respect to the ellipsoid from those based on conventional elevations referenced to the geoid

    Study of melt and a clast of 546 Ma magmatic arc rocks in the 65 Ma Chicxulub bolide breccia, northern Maya block, Mexico: western limit of Ediacaran arc peripheral to northern Gondwana

    No full text
    The basement of the Maya block of eastern Mexico is generally covered by Mesozoic and Cenozoic platformal carbonate rocks. However, the 65.5 Ma Chicxulub meteorite impact in the northern Yucatan Peninsula excavated deep into the crust and brought crystalline basement fragments into the impact breccias. Common Pb isotopic data from impact melt and a granitic clast from drill core (Y6) are highly radiogenic, consistent with the Archaean derivation. A granodiorite clast in this breccia from drill core (Yaxcopoil-1) yielded a continuous range of concordant 206Pb/238U laser ablation inductively coupled plasma mass spectrometry zircon ages between 546 5 Ma and 465 Ma, with three discordant zircons having 206Pb/238U ages between 130 Ma and 345 Ma. The ca. 546 Ma age is interpreted as the age of granodiorite intrusion, with younger ages representing variable Pb loss during melting associated with the meteorite impact. This is consistent with previous U-Pb zircon data that gave an upper intercept age of 550 ± 15 Ma at Chicxulub, which becomes 545 ±5 Ma when combined with the zircon data from distal ejecta. Such arc rocks are absent in the southern Maya block, and in the neighbouring Oaxaquia terrane (s.s.) they are replaced by a 546 5 Ma plume-related dike swarm. On the other hand, Ediacaran arc rocks continue through the peri-Gondwanan terranes of the Appalachians and Europe (Florida, Carolinia, Avalonia, Iberia, Armorica, Massif Central, Bohemia, and NW Africa). Arc magmatism in these areas ended between 570 Ma (Newfoundland) and 540 Ma (Carolinia/UK) as the subduction zone was replaced by a transform fault along the northern Gondwanan margin. This age range is synchronous with the two-stage birth of Iapetus, suggesting that both are related to major plate reorganization. The source of plume-related dikes may have been located at the rift-rift-transform triple junction between Laurentia, Baltica, and Gondwana

    Modern Radiocarbon Levels for Northwestern Mexico Derived from Tree Rings: A Comparison with Northern Hemisphere Zones 2 and 3 Curves

    No full text
    From the 20th International Radiocarbon Conference held in Kona, Hawaii, USA, May 31-June 3, 2009.The radiocarbon variation for northwestern Mexico during the period 1950-2004 was studied by accelerator mass spectrometry (AMS) and liquid scintillation counting (LSC) analyses of tree rings. Two tree-ring sequences of Pseudotsuga menziesii, sampled in a site isolated from urban centers and active volcanoes (26.18 degrees N, 106.3 degrees W, 3000 m asl), were dendrochronologically dated and separated in annual rings prior to 14C analysis. Results obtained show a similar profile to the values reported for the Northern Hemisphere (NH), having significant correlation coefficients with the compilation curves for NH zone 2 (r = 0.987, p < 0.001) and NH zone 3 (r = 0.993, p < 0.001). The maximum peak is centered at 1964.5 with a ∆14C value of 713.15 +/- 9.3‰. The values obtained for the period 1958-1965 are lower than zone 2 values and higher than zone 3 values. For the period 1975-2004, the values obtained are higher than the NH compilation curve and other NH records. We attribute the first divergence to the North American monsoon that may have carried 14C-depleted air from the south during the summer months; the second divergence may be attributable to 14C-enriched biospheric CO2.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202
    corecore