12 research outputs found

    Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture

    No full text
    Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10−8). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10−4, Bonferroni corrected), of which six reached P < 5 × 10−8, including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility

    Case report of a child bearing a novel deleterious splicing variant in PIGT

    No full text
    Rationale: Trio family-based whole exome sequencing (WES) is a powerful tool in the diagnosis of rare neurodevelopmental diseases, even in patients with the unclear diagnosis. There have been previous reports of variants in the phosphatidylinositol glycan anchor biosynthesis class T (PIGT) gene associated with multiple congenital anomalies, with a total of 14 affected individuals across 8 families. Patient concerns: An 18-month-old boy of Greek ancestry presented with global developmental delay, generalized tonic-clonic seizures, hypotonia, renal cysts, esotropia, bilateral undescended testes, bilateral vesicoureteric reflux, marked cardiac dextroposition, bilateral talipes equinovarus, and dysmorphic features. Diagnosis: WES revealed 2 compound heterozygous variants in the PIGT gene, c.[494-2A>G]; [547A>C]/p.[Asp122Glyfs*35]; [Thr183Pro]. The splicing mutation was demonstrated to lead to the skipping of exon 4. Interventions: Seizures, infections, and other main symptoms were treated. Outcomes: The patient died at 2 years of age before the molecular diagnosis was achieved. Genetic counseling has been offered to the family. Lessons: Most of the clinical features of the patient are in agreement with the previously described PIGT cases corroborating the usefulness of WES as a diagnostic tool

    A broad spectrum of genomic changes in Latinamerican patients with EXT1/EXT2-CDG

    No full text
    Multiple osteochondromatosis (MO), or EXT1/EXT2-CDG, is an autosomal dominant O-linked glycosylation disorder characterized by the formation of multiple cartilage-capped tumors (osteochondromas). In contrast, solitary osteochondroma (SO) is a non-hereditary condition. EXT1 and EXT2, are tumor suppressor genes that encode glycosyltransferases involved in heparan sulfate elongation. We present the clinical and molecular analysis of 33 unrelated Latin American patients (27 MO and 6 SO). Sixty-three percent of all MO cases presented severe phenotype and two malignant transformations to chondrosarcoma (7%). We found the mutant allele in 78% of MO patients. Ten mutations were novel. The disease-causing mutations remained unknown in 22% of the MO patients and in all SO patients. No second mutational hit was detected in the DNA of the secondary chondrosarcoma from a patient who carried a nonsense EXT1 mutation. Neither EXT1 nor EXT2 protein could be detected in this sample. This is the first Latin American research program on EXT1/EXT2-CDG

    Identification and functional analyses of CBS alleles in Spanish and Argentinian homocystinuric patients

    No full text
    Homocystinuria due to CBS deficiency is a rare autosomal recessive disorder characterized by elevated plasma levels of homocysteine (Hcy) and methionine (Met). Here we present the analysis of 22 unrelated patients of different geographical origins, mainly Spanish and Argentinian. Twenty‐two different mutations were found, 10 of which were novel. Five new mutations were missense and five were deletions of different sizes, including a 794‐bp deletion (c.532−37_736 + 438del794) detected by Southern blot analysis. To assess the pathogenicity of these mutations, seven were expressed heterologously in Escherichia coli and their enzyme activities were assayed in vitro, in the absence and presence of the CBS activators PLP and SAM. The presence of the mutant proteins was confirmed by Western blotting. Mutations p.M173del, p.I278S, p.D281N, and p.D321V showed null activity in all conditions tested, whereas mutations p.49L, p.P200L and p.A446S retained different degrees of activity and response to stimulation. Finally, a minigene strategy allowed us to demonstrate the pathogenicity of an 8‐bp intronic deletion, which led to the skipping of exon 6. In general, frameshifting deletions correlated with a more severe phenotype, consistent with the concept that missense mutations may recover enzymatic activity under certain conditions

    MiRNA profiling of whole trabecular bone: identification of osteoporosis-related changes in MiRNAs in human hip bones

    No full text
    Background MicroRNAs (miRNAs) are important regulators of gene expression, with documented roles in bone metabolism and osteoporosis, suggesting potential therapeutic targets. Our aim was to identify miRNAs differentially expressed in fractured vs nonfractured bones. Additionally, we performed a miRNA profiling of primary osteoblasts to assess the origin of these differentially expressed miRNAs. Methods Total RNA was extracted from (a) fresh femoral neck trabecular bone from women undergoing hip replacement due to either osteoporotic fracture (OP group, n = 6) or osteoarthritis in the absence of osteoporosis (Control group, n = 6), matching the two groups by age and body mass index, and (b) primary osteoblasts obtained from knee replacement due to osteoarthritis (n = 4). Samples were hybridized to a microRNA array containing more than 1900 miRNAs. Principal component analysis (PCA) plots and heat map hierarchical clustering were performed. For comparison of expression levels, the threshold was set at log fold change > 1.5 and a p-value < 0.05 (corrected for multiple testing). Results Both PCA and heat map analyses showed that the samples clustered according to the presence or absence of fracture. Overall, 790 and 315 different miRNAs were detected in fresh bone samples and in primary osteoblasts, respectively, 293 of which were common to both groups. A subset of 82 miRNAs was differentially expressed (p < 0.05) between osteoporotic and control osteoarthritic samples. The eight miRNAs with the lowest p-values (and for which a validated miRNA qPCR assay was available) were assayed, and two were confirmed: miR-320a and miR-483-5p. Both were over-expressed in the osteoporotic samples and expressed in primary osteoblasts. miR-320a is known to target CTNNB1 and predicted to regulate RUNX2 and LEPR, while miR-483-5p down-regulates IGF2. We observed a reduction trend for this target gene in the osteoporotic bone. Conclusions We identified two osteoblast miRNAs over-expressed in osteoporotic fractures, which opens novel prospects for research and therapy

    A de novo FOXP1 truncating mutation in a patient originally diagnosed as C Syndrome

    No full text
    De novo FOXP1 mutations have been associated with intellectual disability (ID), motor delay, autistic features and a wide spectrum of speech difficulties. C syndrome (Opitz C trigonocephaly syndrome) is a rare and genetically heterogeneous condition, characterized by trigonocephaly, craniofacial anomalies and ID. Several different chromosome deletions and and point mutations in distinct genes have been associated with the disease in patients originally diagnosed as Opitz C. By whole exome sequencing we identified a de novo splicing mutation in FOXP1 in a patient, initially diagnosed as C syndrome, who suffers from syndromic intellectual disability with trigonocephaly. The mutation (c.1428 + 1 G > A) promotes the skipping of exon 16, a frameshift and a premature STOP codon (p.Ala450GLyfs*13), as assessed by a minigene strategy. The patient reported here shares speech difficulties, intellectual disability and autistic features with other FOXP1 syndrome patients, and thus the diagnosis for this patient should be changed. Finally, since trigonocephaly has not been previously reported in FOXP1 syndrome, it remains to be proved whether it may be associated with the FOXP1 mutation

    Mutations in the EXT1 and EXT2 genes in Spanish patients with multiple osteochondromas

    No full text
    Multiple osteochondromas is an autosomal dominant skeletal disorder characterized by the formation of multiple cartilage-capped tumours. Two causal genes have been identified, EXT1 and EXT2, which account for 65% and 30% of cases, respectively. We have undertaken a mutation analysis of the EXT1 and EXT2 genes in 39 unrelated Spanish patients, most of them with moderate phenotype, and looked for genotype-phenotype correlations. We found the mutant allele in 37 patients, 29 in EXT1 and 8 in EXT2. Five of the EXT1 mutations were deletions identified by MLPA. Two cases of mosaicism were documented. We detected a lower number of exostoses in patients with missense mutation versus other kinds of mutations. In conclusion, we found a mutation in EXT1 or in EXT2 in 95% of the Spanish patients. Eighteen of the mutations were novel

    Mutations in the EXT1 and EXT2 genes in Spanish patients with multiple osteochondromas

    No full text
    Multiple osteochondromas is an autosomal dominant skeletal disorder characterized by the formation of multiple cartilage-capped tumours. Two causal genes have been identified, EXT1 and EXT2, which account for 65% and 30% of cases, respectively. We have undertaken a mutation analysis of the EXT1 and EXT2 genes in 39 unrelated Spanish patients, most of them with moderate phenotype, and looked for genotype-phenotype correlations. We found the mutant allele in 37 patients, 29 in EXT1 and 8 in EXT2. Five of the EXT1 mutations were deletions identified by MLPA. Two cases of mosaicism were documented. We detected a lower number of exostoses in patients with missense mutation versus other kinds of mutations. In conclusion, we found a mutation in EXT1 or in EXT2 in 95% of the Spanish patients. Eighteen of the mutations were novel

    Mutations in the EXT1 and EXT2 genes in Spanish patients with multiple osteochondromas

    No full text
    Multiple osteochondromas is an autosomal dominant skeletal disorder characterized by the formation of multiple cartilage-capped tumours. Two causal genes have been identified, EXT1 and EXT2, which account for 65% and 30% of cases, respectively. We have undertaken a mutation analysis of the EXT1 and EXT2 genes in 39 unrelated Spanish patients, most of them with moderate phenotype, and looked for genotype-phenotype correlations. We found the mutant allele in 37 patients, 29 in EXT1 and 8 in EXT2. Five of the EXT1 mutations were deletions identified by MLPA. Two cases of mosaicism were documented. We detected a lower number of exostoses in patients with missense mutation versus other kinds of mutations. In conclusion, we found a mutation in EXT1 or in EXT2 in 95% of the Spanish patients. Eighteen of the mutations were novel

    Mutations in the EXT1 and EXT2 genes in Spanish patients with multiple osteochondromas

    No full text
    Multiple osteochondromas is an autosomal dominant skeletal disorder characterized by the formation of multiple cartilage-capped tumours. Two causal genes have been identified, EXT1 and EXT2, which account for 65% and 30% of cases, respectively. We have undertaken a mutation analysis of the EXT1 and EXT2 genes in 39 unrelated Spanish patients, most of them with moderate phenotype, and looked for genotype-phenotype correlations. We found the mutant allele in 37 patients, 29 in EXT1 and 8 in EXT2. Five of the EXT1 mutations were deletions identified by MLPA. Two cases of mosaicism were documented. We detected a lower number of exostoses in patients with missense mutation versus other kinds of mutations. In conclusion, we found a mutation in EXT1 or in EXT2 in 95% of the Spanish patients. Eighteen of the mutations were novel
    corecore