8 research outputs found

    Fixed-Term Homotopy

    Get PDF
    A new tool for the solution of nonlinear differential equations is presented. The Fixed-Term Homotopy (FTH) delivers a high precision representation of the nonlinear differential equation using only a few linear algebraic terms. In addition to this tool, a procedure based on Laplace-Padé to deal with the truncate power series resulting from the FTH method is also proposed. In order to assess the benefits of this proposal, two nonlinear problems are solved and compared against other semianalytic methods. The obtained results show that FTH is a power tool capable of generating highly accurate solutions compared with other methods of literature

    A General Solution for Troesch's Problem

    Get PDF
    The homotopy perturbation method (HPM) is employed to obtain an approximate solution for the nonlinear differential equation which describes Troesch’s problem. In contrast to other reported solutions obtained by using variational iteration method, decomposition method approximation, homotopy analysis method, Laplace transform decomposition method, and HPM method, the proposed solution shows the highest degree of accuracy in the results for a remarkable wide range of values of Troesch’s parameter

    New handy and accurate approximation for the Gaussian integrals with applications to science and engineering

    No full text
    In this work, we propose to approximate the Gaussian integral, the error function and the cumulative distribution function by using the power series extender method (PSEM). The approximations proposed in this paper present a high accuracy for the complete domain [–∞,∞]. Furthermore, the approximations are handy and easy computable, avoiding the application of special numerical algorithms. In order to show its high accuracy, three case studies are presented with applications to science and engineering

    Rational Biparameter Homotopy Perturbation Method and Laplace-Padé Coupled Version

    No full text
    The fact that most of the physical phenomena are modelled by nonlinear differential equations underlines the importance of having reliable methods for solving them. This work presents the rational biparameter homotopy perturbation method (RBHPM) as a novel tool with the potential to find approximate solutions for nonlinear differential equations. The method generates the solutions in the form of a quotient of two power series of different homotopy parameters. Besides, in order to improve accuracy, we propose the Laplace-Padé rational biparameter homotopy perturbation method (LPRBHPM), when the solution is expressed as the quotient of two truncated power series. The usage of the method is illustrated with two case studies. On one side, a Ricatti nonlinear differential equation is solved and a comparison with the homotopy perturbation method (HPM) is presented. On the other side, a nonforced Van der Pol Oscillator is analysed and we compare results obtained with RBHPM, LPRBHPM, and HPM in order to conclude that the LPRBHPM and RBHPM methods generate the most accurate approximated solutions

    High Accurate Simple Approximation of Normal Distribution Integral

    Get PDF
    The integral of the standard normal distribution function is an integral without solution and represents the probability that an aleatory variable normally distributed has values between zero and . The normal distribution integral is used in several areas of science. Thus, this work provides an approximate solution to the Gaussian distribution integral by using the homotopy perturbation method (HPM). After solving the Gaussian integral by HPM, the result served as base to solve other integrals like error function and the cumulative distribution function. The error function is compared against other reported approximations showing advantages like less relative error or less mathematical complexity. Besides, some integrals related to the normal (Gaussian) distribution integral were solved showing a relative error quite small. Also, the utility for the proposed approximations is verified applying them to a couple of heat flow examples. Last, a brief discussion is presented about the way an electronic circuit could be created to implement the approximate error function

    The Novel Integral Homotopy Expansive Method

    No full text
    This work proposes the Integral Homotopy Expansive Method (IHEM) in order to find both analytical approximate and exact solutions for linear and nonlinear differential equations. The proposal consists of providing a versatile method able to provide analytical expressions that adequately describe the scientific phenomena considered. In this analysis, it is observed that the proposed solutions are compact and easy to evaluate, which is ideal for practical applications. The method expresses a differential equation as an integral equation and expresses the integrand of the equation in terms of a homotopy. As a matter of fact, IHEM will take advantage of the homotopy flexibility in order to introduce adjusting parameters and convenient functions with the purpose of acquiring better results. In a sequence, another advantage of IHEM is the chance to distribute one or more of the initial conditions in the different iterations of the proposed method. This scheme is employed in order to introduce some additional adjusting parameters with the purpose of acquiring accurate analytical approximate solutions
    corecore