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A new tool for the solution of nonlinear differential equations is presented. The Fixed-Term Homotopy (FTH) delivers a high
precision representation of the nonlinear differential equation using only a few linear algebraic terms. In addition to this tool, a
procedure based on Laplace-Padé to deal with the truncate power series resulting from the FTHmethod is also proposed. In order
to assess the benefits of this proposal, two nonlinear problems are solved and compared against other semianalytic methods. The
obtained results show that FTH is a power tool capable of generating highly accurate solutions compared with other methods of
literature.

1. Introduction

Many physical phenomena are commonly modelled using
nonlinear differential equations, which is a straightforward
way to describe the behaviour of their dynamics. Among
these methods, the most commonly used is the Homotopy
Perturbation Method (HPM) [1–49]. This method is based
in the use of a power series of the homotopy parameter,
which transforms the original nonlinear differential equation
into a series of linear differential equations. In this paper, a
generalization of this concept using a product of two power
series of the homotopy parameter called Fixed Term Homo-
topy (FTH) method is proposed. FTH method transforms
the nonlinear differential equation into a series of linear
differential equations, generating high precision expressions
with fewer algebraic terms, reducing the computing cost.
Furthermore, in order to deal with the truncate power series
obtained with FTH method, the use of Laplace-Pade after-
treatment is also proposed. To assess the potential of the
proposed methodology, two nonlinear problems, Van Der
Pol Oscillator [6, 50] and Troesch’s equation [51–57], will be
solved and compared using similar methodologies.

This paper is organized as follows. In Section 2, the
fundamental idea of the FTH method is described. Section 3
presents a study of convergence for the proposed method.
Section 4 introduces the Laplace-Padé after-treatment. In
Sections 5 and 6, the solution procedure of two nonlinear
problems is presented. Additionally, a discussion of the
obtained results and the finds of this work are summarized in
Section 7. Finally, the conclusions are presented in Section 8.

2. Basic Concept of FTH Method

The FTH and HPM methods share common foundations.
Both methods consider that a nonlinear differential equation
can be expressed as

𝐴 (𝑢) − 𝑓 (𝑟) = 0, where 𝑟 ∈ Ω (1)

which has as boundary condition

𝐵(𝑢,
𝜕𝑢

𝜕𝜂
) = 0, where 𝑟 ∈ Γ, (2)
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where 𝐴 is a general differential operator, 𝑓(𝑟) is a known
analytic function, 𝐵 is a boundary operator, Γ is the boundary
of domainΩ, and 𝜕𝑢/𝜕𝜂 denotes differentation along the nor-
mal drawn outwards from Ω [58]. In general, the 𝐴 operator
can be divided into two operators 𝐿 and 𝑁, which are the
corresponding linear and nonlinear operators, respectively.
Hence, (1) can be rewritten as

𝐿 (𝑢) + 𝑁 (𝑢) − 𝑓 (𝑟) = 0. (3)

Now, a possible homotopy formulation is given by the
expression

𝐻(𝑣, 𝑝) = (1 − 𝑝) [𝐿 (𝑣) − 𝐿 (𝑢
0
)]

+ 𝑝 (𝐿 (𝑣) + 𝑁 (𝑣) − 𝑓 (𝑟)) = 0, 𝑝 ∈ [0, 1] ,

(4)

where 𝑢
0
is the trial function (initial approximation) for (3)

which satises the boundary conditions, and 𝑝 is known as the
perturbation homotopy parameter. From analyzing (4), it can
be concluded that

𝐻(𝑣, 0) = 𝐿 (𝑣) − 𝐿 (𝑢
0
) = 0, (5)

𝐻(𝑣, 1) = 𝐿 (𝑣) + 𝑁 (𝑣) − 𝑓 (𝑟) = 0. (6)

For 𝑝 → 0, the homotopy map (4) is reduced to the
problem (5) that possesses a trivial solution 𝑢

0
. Moreover,

for 𝑝 → 1, the homotopy map (4) is transformed into
the original nonlinear problem (6) that possesses the sought
solution.

For the HPMmethod [9–12], we assume that the solution
for (4) can be written as a power series of 𝑝, such that

𝑣 = 𝑝
0
𝑣
0
+ 𝑝
1
𝑣
1
+ 𝑝
2
𝑣
2
+ ⋅ ⋅ ⋅ . (7)

Considering that 𝑝 → 1, it results that the approximate
solution for (1) is

𝑢 = lim
𝑝→1

𝑣 = 𝑣
0
+ 𝑣
1
+ 𝑣
2
+ ⋅ ⋅ ⋅ . (8)

The series (8) is convergent on most cases [9, 12].
In [59], a homotopywhich uses the auxiliary term𝛼𝑢𝑝(1−

𝑝)was reported.Then,modifying that version, it results in the
following proposed homotopy:

𝐻(𝑣, 𝑝) = (1 − 𝑝) [𝐿 (𝑣) − 𝐿 (𝑢0)]+𝑝 (𝐿 (𝑣) + 𝑁 (𝑣) − 𝑓 (𝑟))

+ 𝑝 (1 − 𝑝)𝐺 (𝑟) = 0, 𝑝 ∈ [0, 1] ,

(9)

where 𝐺(𝑟) is an arbitrary function.
When 𝑝 → 0 or 𝑝 → 1, the auxiliary term 𝑝(1 −

𝑝)𝐺(𝑟) is set to zero. Then, 𝐺(𝑟) does not affect or change
the initial solution when 𝑝 → 0 or the sought solution at
𝑝 → 1. Moreover, a properly selection of 𝐺(𝑟) can be useful

to improve convergence of the homotopy. Now, for the FTH
method, (7) can be rewritten as the product of two power
series, such that

𝑣 = (𝑝
0
𝑣
0
+ 𝑝
1
𝑣
1
+ 𝑝
2
𝑣
2
+ ⋅ ⋅ ⋅) (𝑝

0
𝑤
0
+ 𝑝
1
𝑤
1
+ 𝑝
2
𝑤
2
+ ⋅ ⋅ ⋅) ,

(10)

where 𝑣
0
, 𝑣
1
, . . . are unknown functions to be determined by

the FTH method, and 𝑤
0
, 𝑤
1
, . . . are arbitrarily chosen fixed

terms.
After substituting (10) into (9), and equating terms with

the same order of 𝑝, we obtain a set of linear equations that
lead us to calculate 𝑣

0
, 𝑣
1
, . . .The limit of (10), when 𝑝 → 1,

provides an approximate solution for (3) in the form of

𝑢 = lim
𝑝→1

𝑣 = (𝑣
0
+ 𝑣
1
+ 𝑣
2
+ ⋅ ⋅ ⋅) (𝑤

0
+ 𝑤
1
+ 𝑤
2
+ ⋅ ⋅ ⋅) . (11)

The upper limit exists in the event that both limits exists
so

lim
𝑝→1

(

∞

∑

𝑖=0

𝑣
𝑖
) , (12)

and fixed term

lim
𝑞→1

(

∞

∑

𝑖=0

𝑤
𝑖
) , where

∞

∑

𝑖=0

𝑤
𝑖
̸= 0, (to avoid trivial solution) ,

(13)

exist.

3. Convergence of FTH Method

To analyze the convergence of FTH, (9) is rewritten as

𝐿 (𝑣) = 𝐿 (𝑢
0
) + 𝑝 [𝑓 (𝑟) − 𝑁 (𝑣) − 𝐿 (𝑢

0
)]

+ 𝑝 (1 − 𝑝)𝐺 (𝑟) = 0.

(14)

Applying the inverse operator 𝐿−1 to both sides of (14),
we obtain

𝑣 = 𝑢
0
+ 𝑝 [𝐿

−1
𝑓 (𝑟) − 𝐿

−1
𝑁(𝑣) − 𝑢0] + 𝑝 (1 − 𝑝) 𝐿

−1
𝐺 (𝑟) .

(15)

Assuming that (see (10))

𝑣 = (

∞

∑

𝑖=0

𝑝
𝑖
𝑣
𝑖
)(

∞

∑

𝑖=0

𝑝
𝑖
𝑤
𝑖
) , (16)

and substituting (16) into the right-hand side of (15), we
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obtain

𝑣 = 𝑢
0
+ 𝑝[𝐿

−1
𝑓 (𝑟) − (𝐿

−1
𝑁)[(

∞

∑

𝑖=0

𝑝
𝑖
𝑣
𝑖
)(

∞

∑

𝑖=0

𝑝
𝑖
𝑤
𝑖
)]

− 𝑢
0
] + 𝑝 (1 − 𝑝) 𝐿

−1
𝐺 (𝑟) .

(17)

The exact solution of (3) is obtained when 𝑝 → 1 of (17),
resulting in

𝑢 = lim
𝑝→1

(𝑝𝐿
−1
𝑓 (𝑟) − 𝑝 (𝐿

−1
𝑁)[(

∞

∑

𝑖=0

𝑝
𝑖
𝑣
𝑖
)(

∞

∑

𝑖=0

𝑝
𝑖
𝑤
𝑖
)]

+ 𝑢
0
− 𝑝𝑢
0
+ 𝑝 (1 − 𝑝) 𝐿

−1
𝐺 (𝑟))

= 𝐿
−1
𝑓 (𝑟) − [

∞

∑

𝑖=0

(𝐿
−1
𝑁) (𝑣

𝑖
𝛽)] , 𝛽 =

∞

∑

𝑖=0

𝑤
𝑖
.

(18)

For the convergence analysis of the FTHmethod, we used
the BanachTheorem as reported in [1, 2, 5, 60]. Such theorem
relates the solution of (3) and the fixed point problem of the
nonlinear operator𝑁.

Theorem 1 (Sufficient Condition of Convergence). Suppose
that 𝑋 and 𝑌 are Banach spaces and 𝑁 : 𝑋 → 𝑌 is a
contractive nonlinear mapping, then

∀𝑤,𝑤
∗
∈ 𝑋;

󵄩󵄩󵄩󵄩𝑁 (𝑤)−𝑁 (𝑤
∗
)
󵄩󵄩󵄩󵄩 ≤ 𝛾

󵄩󵄩󵄩󵄩𝑤−𝑤
∗󵄩󵄩󵄩󵄩 ; 0 < 𝛾 < 1.

(19)

According to Banach Fixed Point Theorem, 𝑁 has a
unique fixed point 𝑢 such that 𝑁(𝑢) = 𝑢. Assume that the
sequence generated by the FTH method can be written as

𝑊
𝑛
= 𝑁 (𝑊

𝑛−1
) , 𝑊

𝑛−1
=

𝑛−1

∑

𝑖=0

(𝑣
𝑖
𝛽) , 𝑛 = 1, 2, 3 . . . ,

(20)

If one assumes that 𝑊
0
= 𝑣
0
𝛽 ∈ 𝐵

𝑟
(𝑢), where 𝐵

𝑟
(𝑢) =

{𝑤
∗
∈ 𝑋 | ‖𝑤

∗
− 𝑢‖ < 𝑟}. Then, under these conditions:

(i) 𝑊
𝑛
∈ 𝐵
𝑟
(𝑢),

(ii) lim
𝑛→∞

𝑊
𝑛
= 𝑢.

Proof. (i) By inductive approach, we have for 𝑛 = 1
󵄩󵄩󵄩󵄩𝑊1 − 𝑢

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑁 (𝑊0) − 𝑁 (𝑢)

󵄩󵄩󵄩󵄩 ≤ 𝛾
󵄩󵄩󵄩󵄩𝑤0 − 𝑢

󵄩󵄩󵄩󵄩 . (21)

Assuming as induction hypothesis that ‖𝑊
𝑛−1

− 𝑢‖ ≤

𝛾
𝑛−1
‖𝑤
0
− 𝑢‖, then

󵄩󵄩󵄩󵄩𝑊𝑛 − 𝑢
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑁 (𝑊𝑛−1) − 𝑁 (𝑢)
󵄩󵄩󵄩󵄩 ≤ 𝛾

󵄩󵄩󵄩󵄩𝑊𝑛−1 − 𝑢
󵄩󵄩󵄩󵄩

≤ 𝛾
𝑛 󵄩󵄩󵄩󵄩𝑤0 − 𝑢

󵄩󵄩󵄩󵄩 .

(22)

Using (i), we have

󵄩󵄩󵄩󵄩𝑊𝑛 − 𝑢
󵄩󵄩󵄩󵄩 ≤ 𝛾
𝑛 󵄩󵄩󵄩󵄩𝑤0 − 𝑢

󵄩󵄩󵄩󵄩 ≤ 𝛾
𝑛
𝑟 < 𝑟 󳨐⇒ 𝑊

𝑛
∈ 𝐵
𝑟 (𝑢) . (23)

(ii) Because of ‖𝑊
𝑛
−𝑢‖ ≤ 𝛾

𝑛
‖𝑤
0
−𝑢‖ and lim

𝑛→∞
𝛾
𝑛
= 0,

lim
𝑛→∞

‖𝑊
𝑛
− 𝑢‖ = 0, that is,

lim
𝑛→∞

𝑊
𝑛
= 𝑢. (24)

4. Laplace-Padé after Treatment for
FTH Series

Thecoupling of Laplace transformandPadé approximant [61]
is used in order to recover part of the lost information due to
the truncated power series [60, 62–70]. The process can be
recast as follows.

(1) First, Laplace transformation is applied to power
series obtained by FTH method.

(2) Next, 𝑠 is substituted by 1/𝑡 in the resulting equation.

(3) After that, we convert the transformed series into a
meromorphic function by forming its Padé approxi-
mant of order [𝑁/𝑀]. 𝑁 and𝑀 are arbitrarily cho-
sen, but they should be of smaller value than the order
of the power series. In this step, the Padé approximant
extends the domain of the truncated series solution to
obtain better accuracy and convergence.

(4) Then, 𝑡 is substituted by 1/𝑠.

(5) Finally, by using the inverse Laplace 𝑠 transformation,
we obtain the modified approximate solution.

We will denominate to this process as the Laplace-Padé
fixed term homotopy (LPFTH) method.

5. Van Der Pol Oscillator

Consider the Van der Pol Oscillator problem [6, 50]

𝑢
󸀠󸀠
+ 𝑢
󸀠
+ 𝑢 + 𝑢

2
𝑢
󸀠
− 2 cos (𝑡) + cos3 (𝑡) = 0,

𝑢 (0) = 0, 𝑢
󸀠
(0) = 1,

(25)

which have the exact solution

𝑢 (𝑡) = sin (𝑡) . (26)

In order to find an approximate solution for (25) bymeans
of LPFTH, we obtain the Taylor series of the trigonometric
terms, resulting is

−2 cos (𝑡) + cos3 (𝑡) = −1 − 1
2
𝑡
2
+
19

24
𝑡
4
−
181

720
𝑡
6
, (27)

where the expansion order is 7.
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From (9), we establish the following homotopy equation

(1 − 𝑝) (𝑣
󸀠󸀠
) + 𝑝(𝑣

󸀠󸀠
+ 𝑣
󸀠
+ 𝑣 + 𝑣

2
𝑣
󸀠
− 1 −

1

2
𝑡
2
+
19

24
𝑡
4

−
181

720
𝑡
6
) + 𝑏𝑝 (1 − 𝑝) 𝑡

3
= 0,

(28)

where 𝑏 is an adjustment parameter due to the auxiliary term
𝑏𝑝(1 − 𝑝)𝑡

3.
From (10), we assume that solution for (28) has the

following form:

𝑣 = (𝑣
0
+ 𝑣
1
𝑝 + 𝑣
2
𝑝
2
) (1 + 𝑎𝑡

2
𝑝) , (29)

where 𝑎 is an adjustment parameter of the fixed term of the
homotopy map.

Substituting (29) into (28), and rearranging the terms of
the same order of 𝑝,

𝑝
0
: 𝑣
󸀠󸀠

0
= 0, 𝑣

0
(0) = 0, 𝑣

󸀠

0
(0) = 1

𝑝
1
: 𝑣
󸀠󸀠

1
− 1 + 𝑎𝑣

󸀠󸀠

0
𝑡
2
+ 4𝑎𝑡𝑣

󸀠

0
+ 2𝑎𝑣

0
+ 𝑏𝑡
3

−
1

2
𝑡
2
+
19

24
𝑡
4
+ 𝑣
0
+ 𝑣
󸀠

0
−
181

720
𝑡
6
+ 𝑣
2

0
𝑣
󸀠

0
= 0,

𝑣
1
(0) = 0, 𝑣

󸀠

1
(0) = 0,

𝑝
2
: 𝑣
󸀠󸀠

2
+ 𝑎𝑣
󸀠󸀠

1
𝑡
2
+ 3𝑎𝑣

2

0
𝑣
󸀠

0
𝑡
2
+ 2𝑎𝑣

3

0
𝑡 + 2𝑣

0
𝑣
1
𝑣
󸀠

0
+ 4𝑎𝑡𝑣

󸀠

1

− 𝑏𝑡
3
+ 𝑣
2

0
𝑣
󸀠

1
+ 2𝑎𝑡𝑣

0
+ 𝑣
0
𝑎𝑡
2
+ 𝑣
1
+ 𝑎𝑣
󸀠

0
𝑡
2
+ 𝑣
󸀠

1
+ 2𝑎𝑣

1
=0,

𝑣
2
(0)=0, 𝑣

󸀠

2
(0)=0.

...
(30)

By solving (30), we obtain

𝑣
0
= 𝑡,

𝑣
1
=
181

40320
𝑡
8
−
1

20
𝑏𝑡
5
−
19

720
𝑡
6
−
1

24
𝑡
4
+ (−𝑎 −

1

6
) 𝑡
3
,

𝑣
2
=

181

443520
𝑡
11
+ (−

181

40320
𝑎 −

181

3628800
) 𝑡
10
+

883

362880
𝑡
9

+ (
19

720
𝑎 +

1

160
𝑏 +

19

40320
) 𝑡
8

+ (
1

20
𝑎𝑏 +

1

840
𝑏 +

7

720
) 𝑡
7
+ (

1

24
𝑎 +

1

120
𝑏 +

7

240
) 𝑡
6

+ (𝑎
2
+
1

6
𝑎 +

1

20
𝑏 +

1

60
) 𝑡
5
+
1

24
𝑡
4
.

...
(31)

Substituting (31) into (29), and calculating the limit when
𝑝 → 1, we obtain the second order approximated solution

𝑢 (𝑡) = lim
𝑝→1

𝑣 = (𝑣
0
+ 𝑣
1
+ 𝑣
2
) (1 + 𝑎𝑡

2
) . (32)

Then, we select the adjustment parameters as: 𝑎 =

0.4431998183𝐸-3, 𝑏 = −2.1761220576; where the parameters
are calculated using the NonlinearFit command from Maple
Release 13 [5, 32–34].Moreover, NonlinearFit commandfinds
values of the approximate model parameters such that the
sum of the squared 𝑘-residuals is minimized.

In order to guarantee the validity of the approximate solu-
tion (32) for large 𝑡, the series solution is transformed by the
Laplace-Padé after-treatment. First, Laplace transformation
is applied to (32) and then 1/𝑡 is written in place of 𝑠 in the
equation.Then, the Padé approximant [2/2] is applied and 1/𝑠
is written in place of 𝑡. Finally, by using the inverse Laplace 𝑠
transformation, we obtain themodified approximate solution

𝑢 (𝑡) = 0.9986730464 sin (1.0013287167𝑡) . (33)

6. Troesch’s Problem

The Troesch’s equation is a boundary value problem (BVP)
that arises in the investigation of confinement of a plasma
column by a radiation pressure [71] and also in the theory
of gas porous electrodes [72, 73].The problem is expressed as

𝑦
󸀠󸀠
= 𝑛 sinh (𝑛𝑦) , 𝑦 (0) = 0, 𝑦 (1) = 1, (34)

where prime denotes differentiation with respect to 𝑥 and 𝑛
is known as Troesch’s parameter.

Straightforward application of FTH to solve (34) is not
possible due to the hyperbolic sin term of dependent variable.
Nevertheless, the polynomial type nonlinearities are easier to
handle by the FTHmethod.Therefore, in order to apply FTH
successfully, we convert the hyperbolic-type nonlinearity in
Troesch’s problem into a polynomial type nonlinearity, using
the variable transformation reported in [51, 52]

𝑢 (𝑥) = tanh(𝑛
4
𝑦 (𝑥)) . (35)

After using (35), we obtain the following transformed
problem:

(1 − 𝑢
2
) 𝑢
󸀠󸀠
+ 2𝑢(𝑢

󸀠
)
2

− 𝑛
2
𝑢 (1 + 𝑢

2
) = 0, (36)

where conditions are obtained by using variable transforma-
tion (35).

Substituting original boundary conditions 𝑦(0) = 0 and
𝑦(1) = 1 into (35) results in

𝑢 (0) = 0, 𝑢 (1) = tanh(𝑛
4
) . (37)
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Table 1: Comparison between exact solution (26) for (25) and the results of approximations: LPFTH (33), HPM [6], and VIM [6] (A.E. means
absolute error).

𝑡 Exact (26) LPFTH (33) HPM [6] VIM [6] A.E. of LPFTH A.E. of HPM A.E. of VIM
1.0 0.84147098 0.84107061 0.83819112 0.82124433 0.00040038 0.00327987 0.02022665
2.0 0.90929743 0.90698321 0.78090770 0.23121704 0.00231422 0.12838972 0.67808039
3.0 0.14112001 0.13699062 −0.19760326 −3.14507873 0.00412939 0.33872327 3.28619874
4.0 −0.75680250 −0.75925698 −0.94834234 −8.80326033 0.00245449 0.19153985 8.04645783
5.0 −0.95892427 −0.95574867 −1.02405737 −16.02894628 0.00317560 0.06513310 15.07002201
6.0 −0.27941550 −0.27139133 −0.11322005 −24.21046104 0.00802417 0.16619545 23.93104554
7.0 0.65698660 0.66308908 0.88967763 −34.18610854 0.00610248 0.23269103 34.84309514
8.0 0.98935825 0.98644505 1.23972759 −46.77116918 0.00291320 0.25036935 47.76052743
9.0 0.41211849 0.40066121 0.43840592 −62.53129090 0.01145728 0.02628744 62.94340939
10.0 −0.54402111 −0.55438502 −0.70915755 −80.67754120 0.01036391 0.16513644 80.13352009
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Figure 1: Exact solution (26) (diagonal cross) for (25) and its approximate solutions (33) (solid line), HPM [6] (dash-dot), and VIM [6] (solid
diamond).

From (9) and (36), we can formulate the following
homotopy [7–9]:

𝐻(𝑣, 𝑝) = (1 − 𝑝) 𝑣
󸀠󸀠

+ 𝑝 ((1 − 𝑣
2
) 𝑣
󸀠󸀠
+ 2𝑣(𝑣

󸀠
)
2

− 𝑛
2
𝑣 (1 + 𝑣

2
))

+ 𝑝𝑐 (1 − 𝑝) 𝑥
6
= 0,

(38)

where 𝑝 is the homotopy parameter and 𝑐 is an adjustment
parameter due to the auxiliary term 𝑝𝑐(1 − 𝑝)𝑥

6.
From (10), we assume that solution for (38) has the

following form:

𝑣 = (𝑣
0
+ 𝑣
1
𝑝 + 𝑣
2
𝑝
2
) (1 + 𝑝𝑎𝑥 + 𝑝

2
𝑏𝑥
2
) , (39)

where 𝑎, 𝑏 are the adjustment parameters due to the fixed
term (1 + 𝑝𝑎𝑥 + 𝑝

2
𝑏𝑥
2
) of the homotopy map.

Substituting (39) into (38) and equating identical powers
of 𝑝 terms, we obtain

𝑝
0
: 𝑣
󸀠󸀠

0
= 0, 𝑣

0
(0) = 0, 𝑣

0
(1) = 𝛾,

𝑝
1
: 𝑣
󸀠󸀠

1
− 𝑣
2

0
𝑣
󸀠󸀠

0
− 𝑛
2
𝑣
3

0
+ 2𝑣
0
𝑣
󸀠2

0
+ 𝑣
󸀠󸀠

0
𝑎𝑥 + 2𝑣

󸀠

0
𝑎 − 𝑛
2
𝑣
0

+ 𝑐𝑥
6
= 0, 𝑣

1
(0) = 0, 𝑣

1
(1) = 0,

𝑝
2
: 𝑣
󸀠󸀠

2
+ 𝑛
2
𝑣
1
+ 2𝑣
󸀠

1
𝑎 + 6𝑣

0
𝑣
󸀠2

0
𝑎𝑥 − 𝑣

2

0
𝑣
󸀠󸀠

1
+ 2𝑣
2

0
𝑣
󸀠

0
𝑎

− 3𝑛
2
𝑣
3

0
𝑎𝑥 − 𝑛

2
𝑣
0
𝑎𝑥 + 2𝑏𝑣

0
+ 4𝑣
󸀠

0
𝑏𝑥 + 4𝑣

0
𝑣
󸀠

1
𝑣
󸀠

0

− 𝑐𝑥
6
+ 𝑣
󸀠󸀠

0
𝑏𝑥
2
− 3𝑛
2
𝑣
1
𝑣
2

0
− 2𝑣
0
𝑣
1
𝑣
󸀠󸀠

0
+ 2𝑣
1
𝑣
󸀠2

0

+ 𝑣
󸀠󸀠

1
𝑎𝑥 − 3𝑣

2

0
𝑎𝑥𝑣
󸀠󸀠

0
= 0, 𝑣

2
(0) = 0, 𝑣

2
(1) = 0,

(40)

where 𝛾 = tanh(𝑛/4).
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We solve (40) by using Maple software, resulting in

𝑣
0
= 𝛾𝑥,

𝑣
1
= (

1

56
𝑐 −

1

20
𝛾
3
𝑛
2
+
1

3
𝛾
3
−
1

6
𝛾𝑛
2
+ 𝛾𝑎) 𝑥 − 𝛾𝑎𝑥

2

+ (−
1

3
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3
+
1

6
𝛾𝑛
2
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3
+
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3
𝑛
2
𝑥
5
−
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8
,
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3
+
7
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𝛾
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−
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(41)

Substituting (41) into (39), and calculating the limit when
𝑝 → 1, we obtain the second order approximated solution
of (36)

𝑢
2
(𝑥) = lim

𝑝→1

𝑣 = (𝑣
0
+ 𝑣
1
+ 𝑣
2
) (1 + 𝑎𝑥 + 𝑏𝑥

2
) . (42)

Finally, from (35) and (42), the proposed solution of
Troesch’s problem is

𝑦 (𝑥) =
4

𝑛
tanh−1 (𝑢

2 (𝑥)) , 0 ≤ 𝑥 ≤ 1. (43)

If we consider 𝑛 = 0.5, then we choose the adjustment
parameter as: 𝑎 = 0.4144179560𝐸-5, 𝑏 = 1.7343105421𝐸-8,

and 𝑐 = 0.2046343553𝐸-2, by using the procedure explained
for the Van der Pol Oscillator problem.

7. Numerical Simulation and Discussion

A comparison of the exact solution (26) of the Van der Pol
Oscillator against the approximated solutions obtained by
LPFTH (33), HPM [6], and VIM [6] is shown in Table 1
and Figure 1. In the comparison can be seen that the LPFTH
method exhibited the higher accuracy for a large period of
time reproducing successfully the oscillatory behaviour of the
exact solution (26), therefore, being a suitable alternative to
solve nonlinear oscillators.

The Troesch’s BVP problem is a benchmark equation
for numerical [74, 75] and semi-analytical methods [51–57]
which has been solved by FTH to obtain the approximated
solution (43). Table 2 shows a comparison of the results
obtained with other semi-analytical methods as: homotopy
perturbation method (HPM) [52, 54, 55], decomposition
method approximation (DMA) [53, 54], homotopy analysis
method (HAM) [56], and Laplace transform decomposi-
tion method (LTDM) [57]. The comparison shows that the
average absolute relative error (A.A.R.E.) of (43) is lower
than most of the reported results and similar to LDTM
[57].

For both cases of study, polynomial functions were used
for fixed and auxiliary terms as they generate the best
results. Nonetheless, functions as exponential, trigonometric
or hyperbolic may enlarge the domain of convergence.
Thereby, a methodology that allows the selection of fixed and
auxiliary terms like these to obtain more accurate solutions is
a window of opportunity to be exploited.

Since FTH does not rely in the linearization of the input
equations, a perturbation parameter nor assumption of weak
nonlinearity, the solution generated may be general and
more realistic than the method of simplifying the physical
problems.

8. Conclusions

In this work, the Fixed Term Homotopy and the Laplace-
Padé Fixed Term Homotopy methods are presented as
novel tools to solve nonlinear ordinary differential equations.
The proposed methods were tested using two nonlinear
problems: a second order nonlinear oscillator and a high
nonlinear boundary value problem. From a comparison
against several semi-analytical methods from the literature,
FTH and LPFTH probed to be power tools that generate
highly accurate easy manageable expressions. Furthermore,
the homotopy given in (9) may be replaced or modified by a
formulation inspired by some other homotopy method pro-
posed in literature [76–96], which can lead to improvement of
convergence of proposedmethods. Additionally, being FTHa
modified version ofHPMcan be assumed that the differential
equations solved by HPM should be also solvable by FTH.
In that fashion, further research can be focused on applying
FTH method in the solution of nonlinear partial differential
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equations, nonlinear fractional differential equations, among
others.
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