327 research outputs found

    Developing Online Sense of Community: Graduate Students\u27 Experiences and Perceptions

    Get PDF
    Building a sense of community (SoC) is an important process in the success of distance education and students’ retention. However, developing a community in online learning environments is not an easy task. The purpose of this research study is to explore perceptions of graduate students on SoC and learning after using different collaborative activities with diverse forms of interaction (text, audio, and video) in an online educational research course. Quantitative data from two surveys and qualitative data from individual interviews were collected. Findings indicate that multimodal and scaffolding interactive activities help to support connectedness and learning, and therefore foster online graduate students’ sense of community. The results of this study add to the literature with regard to instructional strategies used to support the development of online sense of community

    [Un]consciously [Dis]serving English Learners: A Reflection of Bilingual Teacher Educators on the Border

    No full text
    We are teacher educators along the Mexico/U.S. border. Jeanette is a Tsalagi woman who has some knowledge of her tribal language, but who does not have fluency. Lida and Blanca work with elementary teacher candidates in an on-site bilingual block in a local partner school, while Jeanette teaches the undergraduate and graduate multicultural education course, which is required for admission to the teacher education program. In the elementary teacher education program, the teacher candidates participate in the on-site blocks for one year where they are immersed in the classroom four mornings a week. Teacher candidates work with cooperating teachers—the licensed classroom teachers—during the mornings and participate in methods courses after practicum hours

    An Alternative Approach to Educating Secondary Science and Mathematics Teachers: Meeting the Needs of Culturally and Linguistically Diverse Youth

    No full text
    This chapter seeks to describe an alternative licensure program, Aggie Prep, developed to address the needs of underrepresented students in the Southwest. The aim of the program was to prepare culturally and linguistically responsive first-year teachers seeking secondary alternative certification in science or mathematics. We discuss how this innovative alternative licensure program for secondary STEM teachers utilizes a competency-based curriculum with a practice-based approach to strategically identify opportunities to integrate science, mathematics, literacy, and language instruction for culturally and linguistically diverse youth. We specifically outline the use of ongoing professional development in the form of coursework, field coaching, mentoring and targeted professional development. The program assists beginning teachers to (1) make science, mathematics and language learning accessible; (2) elevate content rigor; (3) plan with print and non-print text in mind; and (4) build collaborative learning environments with attention to integrated content, language and literacy through a contextualized science, mathematics, and engineering approach. An integral part of this approach was the emphasis on the use of engaging inquiry-based activities. We share how we support our students’ ability to reflect on the nature of content, how adolescents learn, and implement instructional best practices of science and mathematics that accommodate the language and learning needs of students in their classrooms

    Search for new physics in multijet events with at least one photon and large missing transverse momentum in proton-proton collisions at 13 TeV

    No full text
    International audienceA search for new physics in final states consisting of at least one photon, multiple jets, and large missing transverse momentum is presented, using proton-proton collision events at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 137 fb1^{-1}, recorded by the CMS experiment at the CERN LHC from 2016 to 2018. The events are divided into mutually exclusive bins characterized by the missing transverse momentum, the number of jets, the number of b-tagged jets, and jets consistent with the presence of hadronically decaying W, Z, or Higgs bosons. The observed data are found to be consistent with the prediction from standard model processes. The results are interpreted in the context of simplified models of pair production of supersymmetric particles via strong and electroweak interactions. Depending on the details of the signal models, gluinos and squarks of masses up to 2.35 and 1.43 TeV, respectively, and electroweakinos of masses up to 1.23 TeV are excluded at 95% confidence level

    Search for a high-mass dimuon resonance produced in association with b quark jets at s\sqrt{s}=13 TeV

    No full text
    International audienceA search for high-mass dimuon resonance production in association with one or more b quark jets is presented. The study uses proton-proton collision data collected with the CMS detector at the LHC corresponding to an integrated luminosity of 138 fb1^{-1} at a center-of-mass energy of 13 TeV. Model-independent limits are derived on the number of signal events with exactly one or more than one b quark jet. Results are also interpreted in a lepton-flavor-universal model with Z' boson couplings to a bb quark pair (gbg_\mathrm{b}), an sb quark pair (gbδbsg_\mathrm{b}\delta_\mathrm{bs}), and any same-flavor charged lepton (gg_\ell) or neutrino pair (gνg_\nu), with gν=g\left|g_{\nu}\right|=\left|g_\ell\right|. For a Z' boson with a mass mZm_{\mathrm{Z}'} = 350 GeV (2 TeV) and δbs<\left|\delta_\mathrm{bs}\right| \lt 0.25, the majority of the parameter space with 0.0057 <g<\lt \left|g_\ell\right| \lt 0.35 (0.25 <g<\lt \left|g_\ell\right| \lt 0.43) and 0.0079 <gb<\lt \left|g_\mathrm{b}\right| \lt 0.46 (0.34 <gb<\lt \left|g_\mathrm{b}\right| \lt 0.57) is excluded at 95% confidence level. Finally, constraints are set on a Z' model with parameters consistent with low-energy b \to s\ell\ell measurements. In this scenario, most of the allowed parameter space is excluded for a Z' boson with 350 <mZ<\lt m_{\mathrm{Z}'}\lt 500 GeV, while the constraints are less stringent for higher mZm_{\mathrm{Z}'} hypotheses. This is the first dedicated search at the LHC for a high-mass dimuon resonance produced in association with multiple b quark jets, and the constraints obtained on models with this signature are the most stringent to date

    Observation of the rare decay of the η\eta meson to four muons

    No full text
    A search for the rare η\eta\toμ+μμ+μ\mu^+\mu^-\mu^+\mu^- double-Dalitz decay is performed using a sample of proton-proton collisions, collected by the CMS experiment at the CERN LHC with high-rate muon triggers in 2017-2018 and corresponding to an integrated luminosity of 101 fb1^{-1}. A signal having a statistical significance well in excess of 5 standard deviations is observed. Using the \emm decay as normalization, the branching fraction B(\mathcal{B}(ημ+μμ+μ) \to \mu^+\mu^-\mu^+\mu^-) = ( 5.0 ±\pm 0.8 (stat) ±\pm 0.7 (syst) ±\pm 0.7 B2μ\mathcal{B}_{2\mu} ) ×\times 109^{-9} is measured, where the last term is the uncertainty in the normalization channel branching fraction. This is the first measurement of this branching fraction and is found to be in agreement with theoretical predictions

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    Since the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger

    Search for supersymmetry in final states with disappearing tracks in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    A search is presented for charged, long-lived supersymmetric particles in final states with one or more disappearing tracks. The search is based on data from proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the CERN LHC between 2016 and 2018, corresponding to an integrated luminosity of 137 fb1^{-1}. The search is performed over final states characterized by varying numbers of jets, b-tagged jets, electrons, and muons. The length of signal-candidate tracks in the plane perpendicular to the beam axis is used to characterize the lifetimes of wino- and higgsino-like charginos produced in the context of the minimal supersymmetric standard model. The dEE/dxx energy loss of signal-candidate tracks is used to increase the sensitivity to charginos with a large mass and thus a small Lorentz boost. The observed results are found to be statistically consistent with the background-only hypothesis. Limits on the pair production cross section of gluinos and squarks are presented in the framework of simplified models of supersymmetric particle production and decay, and for electroweakino production based on models of wino and higgsino dark matter. The limits presented are the most stringent to date for scenarios with light third-generation squarks and a wino- or higgsino-like dark matter candidate capable of explaining the known dark matter relic density

    Search for physics beyond the standard model in top quark production with additional leptons in the context of effective field theory

    No full text
    A search for new physics in top quark production with additional final-state leptons is performed using data collected by the CMS experiment in proton-proton collisions at s\sqrt{s} = 13 TeV at the LHC during 2016-2018. The data set corresponds to an integrated luminosity of 138 fb1^{-1}. Using the framework of effective field theory (EFT), potential new physics effects are parametrized in terms of 26 dimension-six EFT operators. The impacts of EFT operators are incorporated through the event-level reweighting of Monte Carlo simulations, which allows for detector-level predictions. The events are divided into several categories based on lepton multiplicity, total lepton charge, jet multiplicity, and b-tagged jet multiplicity. Kinematic variables corresponding to the transverse momentum (pTp_\mathrm{T}) of the leading pair of leptons and/or jets as well as the pTp_\mathrm{T} of on-shell Z bosons are used to extract the 95% confidence intervals of the 26 Wilson coefficients corresponding to these EFT operators. No significant deviation with respect to the standard model prediction is found

    Observation of WWγ\gamma production and search for Hγ\gamma production in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    The observation of WWγ\gamma production in proton-proton collisions at a center-of-mass energy of 13 TeV with an integrated luminosity of 138 fb1^{-1} is presented. The observed (expected) significance is 5.6 (4.7) standard deviations. Events are selected by requiring exactly two leptons (one electron and one muon) of opposite charge, moderate missing transverse momentum, and a photon. The measured fiducial cross section for WWγ\gamma is 6.0 ±\pm 0.8 (stat) ±\pm 0.7 (syst) ±\pm 0.6 (modeling) fb, in agreement with the next-to-leading order quantum chromodynamics prediction. The analysis is extended with a search for the associated production of the Higgs boson and a photon, which is generated by a coupling of the Higgs boson to light quarks. The result is used to constrain the Higgs boson couplings to light quarks
    corecore