1,076 research outputs found

    Mode-selective vibrational excitation induced by nonequilibrium transport processes in single-molecule junctions

    Full text link
    In a nanoscale molecular junction at finite bias voltage,the intra-molecular distribution of vibrational energy can strongly deviate from the thermal equilibrium distribution and specific vibrational modes can be selectively excited in a controllable way,regardless of the corresponding mode frequency. This is demonstrated for generic models of asymmetric molecular junctions with localized electronic states, employing a master equation as well as a nonequilibrium Green's function approach. It is shown that the applied bias voltage controls the excitation of specific vibrational modes coupled to these states, by tuning their electronic population,which influences the efficiency of vibrational cooling processes due to energy exchange with the leads.Comment: 12 pages, 4 figures, and Support Informatio

    Power Posing: P-Curving the Evidence

    Get PDF
    In a well-known article, Carney, Cuddy, and Yap (2010) documented the benefits of “power posing”. In their study, participants (N=42) who were randomly assigned to briefly adopt expansive, powerful postures sought more risk, had higher testosterone levels, and had lower cortisol levels than those assigned to adopt contractive, powerless postures. In their response to a failed replication by Ranehill et al. (2015), Carney, Cuddy, and Yap (2015) reviewed 33 successful studies investigating the effects of expansive vs. contractive posing, focusing on differences between these studies and the failed replication, to identify possible moderators that future studies could explore. But before spending valuable resources on that, it is useful to establish whether the literature that Carney et al. (2015) cited actually suggests that power posing is effective. In this paper we rely on p-curve analysis to answer the following question: Does the literature reviewed by Carney et al. (2015) suggest the existence of an effect once we account for selective reporting? We conclude not. The distribution of p-values from those 33 studies is indistinguishable from what is expected if (1) the average effect size were zero, and (2) selective reporting (of studies and/or analyses) were solely responsible for the significant effects that are published. Although more highly powered future research may find replicable evidence for the purported benefits of power posing (or unexpected detriments), the existing evidence is too weak to justify a search for moderators or to advocate for people to engage in power posing to better their lives

    Visual suppression of the vestibulo-ocular reflex during space flight

    Get PDF
    Visual suppression of the vestibulo-ocular reflex was studied in 16 subjects on 4 Space Shuttle missions. Eye movements were recorded by electro-oculography while subjects fixated a head mounted target during active sinusoidal head oscillation at 0.3 Hz. Adequacy of suppression was evaluated by the number of nystagmus beats, the mean amplitude of each beat, and the cumulative amplitude of nystagmus during two head oscillation cycles. Vestibulo-ocular reflex suppression was unaffected by space flight. Subjects with space motion sickness during flight had significantly more nystagmus beats than unaffected individuals. These susceptible subjects also tended to have more nystagmus beats before flight

    Eye and head motion during head turns in spaceflight

    Get PDF
    Eye-head motion was studied pre-, in- and postflight during single voluntary head turns. A transient increase in vestibulo-ocular reflex (VOR) gain occurred early in the flight, but later trended toward normal. This increased gain was produced by a relative increase in eye counterrotation velocity. Asymmetries in gain with right and left turns also occurred, caused by asymmetries in eye counterrotation velocities. These findings were remarkably similar to those from Soviet primate studies using gaze fixation targets, except the human study trended more rapidly toward normal. These findings differ substantially from those measuring VOR gain by head oscillation, in which no significant changes were found inflight. No visual disturbances were noted in either test condition or in normal activities. These head turn studies are the only ones to date documenting any functional change in VOR in weightlessness

    Studies of the vestibulo-ocular reflex on STS 4, 5 and 6

    Get PDF
    The vestibulo-ocular reflex (VOR) may be altered by weightlessness. Since this reflex plays a large role in visual stabilization, it was important to document any changes caused by space flight. This is a report on findings on STS-4 through 6 and is part of a larger study of neurosensory adaptation done on STS-4 through 8. Voluntary horizontal head oscillations at 1/3 Hz with amplitude of 30 deg right and left of center were recorded by a potentiometer and compared to eye position recorded by electroculography under the following conditions: eyes open, head fixed, tracking horizontal targets switched 0, 15, and 30 degrees right and left (optokinetic reflex - OKR - and calibration); eyes open and fixed on static external target with oscillation, (vestibulo ocular reflex, eyes closed - VOR EC); eyes open and wearing opaque goggles with target fixed in imagination (vestibulo-ocular reflex, eyes shaded - VOR ES); and eyes open and fixed on a head synchronized target with head oscillation (VOR suppression). No significant changes were found in voluntary head oscillation frequency or amplitude in those with (n=5), and without (n=3), space motion sickness (SMS), with phase of flight or test condition. Variations in head oscillation were too small to have produced detectable changes in test results

    Studies of the horizontal vestibulo-ocular reflex on STS 7 and 8

    Get PDF
    Unpaced voluntary horizontal head oscillation was used to study the Vestibulo-Ocular Reflex (VOR) on Shuttle flights STS 7 and 8. Ten subjects performed head oscillations at 0.33 Hz + or - 30 deg amplitude under the followng conditions: VVOR (visual VOR), eyes open and fixed on a stationary target; VOR-EC, with eyes closed and fixed on the same target in imagination; and VOR-S (VOR suppression), with eyes open and fixed on a head-synchronized target. Effects of weightlessness, flight phase, and Space Motion Sickness (SMS) on head oscillation characteristics were examined. A significant increase in head oscillation frequency was noted inflight in subjects free from SMS. In subjects susceptible to SMS, frequency was reduced during their Symptomatic period. The data also suggest that the amplitude and peak velocity of head oscillation were reduced early inflight. No significant changes were noted in reflex gain or phase in any of the test conditions; however, there was a suggestion of an increase in VVOR and VOR-ES gain early inflight in asymptomatic subjects. A significant difference in VOR-S was found between SMS susceptible and non-susceptible subjects. There is no evidence that any changes in VOR characteristics contributed to SMS

    Saccadic eye movement during spaceflight

    Get PDF
    Saccadic eye movements were studied in six subjects during two Space Shuttle missions. Reaction time, peak velocity and accuracy of horizontal, visually-guided saccades were examined preflight, inflight and postflight. Conventional electro-oculography was used to record eye position, with the subjects responding to pseudo-randomly illuminated targets at 0 deg and + or - 10 deg and 20 deg visual angles. In all subjects, preflight measurements were within normal limits. Reaction time was significantly increased inflight, while peak velocity was significantly decreased. A tendency toward a greater proportion of hypometric saccades inflight was also noted. Possible explanations for these changes and possible correlations with space motion sickness are discussed

    Inspecting absorption in the spectra of extra-galactic gamma-ray sources for insight into Lorentz invariance violation

    Full text link
    We examine what the absorbed spectra of extra-galactic TeV gamma-ray sources, such as blazars, would look like in the presence of Lorentz invariance violation (LIV). Pair-production with the extra-galactic background light modifies the observed spectra of such sources, and we show that a violation of Lorentz invariance would generically have a dramatic effect on this absorption feature. Inspecting this effect, an experimental task likely practical in the near future, can provide unique insight on the possibility of LIV.Comment: Published in Phys. Rev.
    corecore