806 research outputs found
Water retention and shrinkage curves of weathered pyroclastic soil
The modelling of the triggering mechanism of rainfall-induced landslides in slopes covered by pyroclastic soil (as the area surrounding Mount Vesuvius in Campania, Italy) requires the hydraulic characterization of soil in unsaturated conditions in order to analyse the slope response to rainfalls. In previous studies carried out on Campanian pyroclastic soils, the volumetric soil changes due to suction changes have been disregarded, being them negligible in soils characterized by low plasticity and low clay contents. However, a more accurate determination of the water retention curve (WRC) in terms of volumetric water content requires a correct estimation of the total soil volume, which is affected by the soil stress-state. The proper approach would require the estimation of both WRC in terms of gravimetric water content and the shrinkage curve (SC). In the present study, a relation between void ratio and suction was determined for a pyroclastic soil sampled at Mount Faito in Southern Italy. Therefore, a correction of the volumetric water content was carried out resulting in updated water retention curves. Here, the matric suction was the only factor affecting the stress-state of the soil
Analysis of aroma and polyphenolic compounds in Saperavi red wine vinified in Qvevri
The purpose of this study is to analyze and characterize a Georgian red wine from Saperavi grape, obtained in Qvevri (Georgian traditional winemaking method), by using innovative techniques for the determination of the polyphenolic content, aroma, and its correlation to the sensory characteristics. This peculiar red wine, after highâperformance liquid chromatography with diodeâarray detection and mass spectrometry (HPLCâDADâMS), headspace solidâphase microextractionâgas chromatographyâmass spectrometry (HSâSPMEâGCâMS), and HSâSPMEâGCxGCâMS/TOF (twoâdimensional gas chromatography) chemical characterization showed a high polyphenol content (19.6Â ĂÂ 10(2)Â mg/L, 38.4% anthocyanins) and a wide range of volatile compounds, among which terpenes were associated with the aroma of flowers, lemongrass, and wood. Analyses were also conducted to determine the total polyphenol content correlated to antioxidant activity with the FolinâCiocalteu spectrophotometric in vitro method (4.650Â g GAE/L). In conclusion, for the first time on Saperavi wine, innovative techniques such as HPLCâDADâMS, GCâMS, and GCxGCâMS/TOF were simultaneously applied in association with the traditional analytic techniques to perform a complete chemical characterization. These activities are part of a project about circular viticulture in the Georgian territory that will lead the production of traced quality wines and the valorization of the Georgian wine sector
A prototype for water content measurement in partially saturated soils
The paper presents the technological set-up and calibration of a system based on impedance spectroscopy for measuring water content in partially saturated soils. The technique adopted is relatively recent in geotechnical practice; it is used herein to characterize the electrical response of a soil specimen among two conducting electrodes upon application of an alternate voltage and the measurement of the current intensity resulting across the specimen, for frequency values in the range [500 Hz - 50 kHz]. The complex impedance of the soil specimen is due to both resistance, i.e. opposition to current, and reactance, i.e. tendency of the system to yield and retrieve energy, and it depends on the specimen water content. An on-purpose experimental plan has been conceived and is presented herein, aimed at building a calibration function for deriving the water content in pyroclastic soils from the impedance measurements. Preliminary results reveal an adequate level of repeatability of the measurements and suggest the existence of a monotonic correlation between the impedance modulus and the gravimetric water content
Update of High Resolution (e,e'K^+) Hypernuclear Spectroscopy at Jefferson Lab's Hall A
Updated results of the experiment E94-107 hypernuclear spectroscopy in Hall A
of the Thomas Jefferson National Accelerator Facility (Jefferson Lab), are
presented. The experiment provides high resolution spectra of excitation energy
for 12B_\Lambda, 16N_\Lambda, and 9Li_\Lambda hypernuclei obtained by
electroproduction of strangeness. A new theoretical calculation for
12B_\Lambda, final results for 16N_\Lambda, and discussion of the preliminary
results of 9Li_\Lambda are reported.Comment: 8 pages, 5 figures, submitted to the proceedings of Hyp-X Conferenc
A multidisciplinary study on the spatial variability of the local stratigraphic conditions in partially saturated slopes for flow-like landslide prediction
Flow-like landslides, which occur mainly in shallow granular deposits resting on steep bedrock, represent a major natural hazard worldwide. The pore water pressure distribution and the soil water content directly affect the soil shear strength, thus controlling the triggering of these landslides. Criticalgeomorphological and topographical settings, together with peculiar stratigraphic and hydrogeological features, are commonly recognized as predisposing factors for flow-like landslides occurrence. Hence, investigating the spatial and temporal variability of hydraulic slope conditions is a fundamental activity that consists of identifying local geological factors and seasonal monitoring of the subsurface water regime. The present work proposes an integrated geological, geophysical and geotechnical approach to identify the spatial variability of the local stratigraphic setting and hydrogeological conditions in a partially saturated slope, in order to set up a procedure able to provide a prediction of the flow-like landslides occurrence atslope scale. The multidisciplinary study has been applied to a test site on Mt. Faito, in the Lattari Mts. (Southern Italy), where extensive geophysical, geological and geotechnical soil characterization and in situmonitoring data collected over two years are available
Spectroscopy of Li-9(Lambda) by electroproduction
Background: In the absence of accurate data on the free two-body hyperon-nucleon interaction, the spectra of hypernuclei provides information on the details of the effective hyperon-nucleon interaction. Purpose: To obtain a high-resolution binding-energy spectrum for the Be-9(e, e\u27 K+) Li-9(Lambda) reaction. Method: Electroproduction of the hypernucleus Li-9(Lambda) has been studied for the first time with sub-MeV energy resolution in Hall A at Jefferson Lab on a Be-9 target. In order to increase the counting rate and to provide unambiguous kaon identification, two superconducting septum magnets and a ring imaging Cherenkov detector were added to the Hall A standard equipment. Results: The cross section to low-lying states of Li-9(Lambda) is concentrated within 3 MeV of the ground state and can be fit with four peaks. The positions of the doublets agree with theory while a disagreement could exist with respect to the relative strengths of the peaks in the doublets. The Lambda separation energy, B-Lambda, of 8.36 +/- 0.08 (stat.) +/- 0.08 (syst.) MeV was measured, in agreement with an earlier experiment
Weak charge form factor and radius of 208Pb through parity violation in electron scattering
We use distorted wave electron scattering calculations to extract the weak
charge form factor F_W(q), the weak charge radius R_W, and the point neutron
radius R_n, of 208Pb from the PREX parity violating asymmetry measurement. The
form factor is the Fourier transform of the weak charge density at the average
momentum transfer q=0.475 fm. We find F_W(q) =0.204 \pm 0.028 (exp) \pm
0.001 (model). We use the Helm model to infer the weak radius from F_W(q). We
find R_W= 5.826 \pm 0.181 (exp) \pm 0.027 (model) fm. Here the exp error
includes PREX statistical and systematic errors, while the model error
describes the uncertainty in R_W from uncertainties in the surface thickness
\sigma of the weak charge density. The weak radius is larger than the charge
radius, implying a "weak charge skin" where the surface region is relatively
enriched in weak charges compared to (electromagnetic) charges. We extract the
point neutron radius R_n=5.751 \pm 0.175 (exp) \pm 0.026 (model) \pm 0.005
(strange) fm$, from R_W. Here there is only a very small error (strange) from
possible strange quark contributions. We find R_n to be slightly smaller than
R_W because of the nucleon's size. Finally, we find a neutron skin thickness of
R_n-R_p=0.302\pm 0.175 (exp) \pm 0.026 (model) \pm 0.005 (strange) fm, where
R_p is the point proton radius.Comment: 5 pages, 1 figure, published in Phys Rev. C. Only one change in this
version: we have added one author, also to metadat
- âŠ