16 research outputs found
Wpływ struktury materiałów wierzchnich i wkładek obuwniczych na ich właściwości elektryczne
Protective footwear for occupational use conducts static electricity through the upper, linings, insole and outsole into the ground. Footwear must be made from appropriate material to reduce the possibility of electrocution and other electricity-related incidents.In this study the influence of footwear materials for the upper and lining components’ structure on their electrical properties was investigated. For investigations leather and various textile laminates were chosen. The thickness of leather coating, composition textile laminates, the upper–lining system, and relative humidity of the environment on electrical resistivity changes were evaluated. Leather shows antistatic properties at standard humidity, but its electrical conductivity greatly increases at high humidity due to the presence of polar groups in the leather structure. Textile lining laminates composed of natural and synthetic fibres are insulators, but their systems with leather at high humidity show resistivity values close to antistatic materials. Leather acrylic coating decreases the electrical conductivity of materials.Obuwie ochronne do użytku zawodowego przenosi ładunki elektrostatyczne przez materiał wierzchni, wkładkę i podeszwę w ziemię. Obuwie musi być wykonane z odpowiedniego materiału, tak aby zmniejszyć ryzyko porażenia prądem i innych incydentów związanych z energią elektryczną. W pracy zbadano wpływ struktury materiałów obuwniczych na ich właściwości elektryczne. Do badań wybrano skórę i różne laminaty tekstylne. Oceniano wpływ grubości powłoki skórzanej, rodzaj kompozycji laminatów tekstylnych oraz wilgotności względnej otoczenia na zmiany rezystywności elektrycznej. Skóra wykazuje właściwości antystatyczne przy standardowej wilgotności, ale jej przewodność elektryczna znacznie wzrasta przy wysokiej wilgotności ze względu na obecność grup polarnych w strukturze skóry. Laminaty z włókien tekstylnych składające się z włókien naturalnych i syntetycznych są izolatorami, ale po połączeniu ich ze skórą w wysokiej wilgotności wykazują wartości oporności zbliżone do materiałów antystatycznych. Stwierdzono także, że skóra z powłoką akrylową charakteryzuje się zmniejszoną przewodnością elektryczną materiałów
Phase-Selective Crystallization of Perylene on Monolayer Templates
The
planar aromatic hydrocarbon perylene serves as the core unit
in many photoconductive and electronic materials. Perylene crystallizes
in two polymorphic forms, α and β, which grow concomitantly
from many solvents. Crystallization in the presence of a small library
of gold–thiol self-assembled monolayers (SAMs) and functionalized
siloxanes identified conditions under which phase pure material can
be obtained. Au-biphenylthiol SAM templates nucleated phase pure α-perylene
with preferred alignment along the α-(100) plane. Siloxanes
with terminal amino functionalities proved to be effective templates
for the generation of phase pure β-perylene aligned along β-(100).
Phase mixtures grew on most other templates examined. Comparison of
the morphologies and nucleation densities of crystals grown under
various conditions suggests that the phase selectivity observed on
these templates is also sensitive to solvent choice and solute concentration
Solvent Effects on the Growth Morphology and Phase Purity of CL-20
The
performance and stability of the high energy secondary explosive
2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW, also known as CL-20)
can be affected by factors including the phase purity of the bulk
material, as well as the particle size, morphology, and defect density
of the individual crystallites. Slow evaporation crystallization of
CL-20 from 16 different single solvent and co-solvent systems was
performed. The phase purity of the bulk material obtained was analyzed
by powder X-ray diffraction, optical microscopy, and differential
scanning calorimetry. These complementary methods confirmed that under
most of the slow evaporation conditions examined, a concomitant mixture
of two or more crystalline phases was usually obtained. Numerous individual
crystal morphologies were determined using single crystal X-ray goniometry
and compared against calculated BFDH morphologies. Examination of
the packing interactions in the different CL-20 phases via Hirshfeld
surface analysis provides some insight into why concomitant polymorphism
is so frequently observed
Structural Diversity in 1,3-Bis(<i>m</i>‑cyanophenyl)urea
Hydrogen
bonding between 1,3-bis ureas is a commonly used motif
in the assembly of supramolecular structures such as gels, capsules
and crystals. The title compound, 1,3-bis(<i>m</i>-cyanophenyl)urea
(<b>mCyPU</b>), has previously been shown to crystallize in
both an anhydrous and monohydrate phase (α and H–I).
An expanded search for polymorphs and cocrystals of <b>mCyPU</b> revealed a much greater diversity of solid forms including three
additional polymorphs (β, δ, ε), a second hydrate
(H–II) and two cocrystal phases with dimethyl sulfoxide and
triphenylphosphine oxide. Analysis of the single crystal structures
obtained in this study shows that the typical 1-dimensional H-bonding
between 1,3-bis urea groups is disrupted by the presence of other
H-bond acceptors including cyano, water, sulfoxide and phosphine oxide
functionalities. Re-examination of <b>α-mCyPU</b> additionally
showed both blade and plate-like morphologies could be obtained from
different growth solvents, with crystals of the latter morphology
exhibiting a grain boundary migration prior to melting
Predicting Cocrystallization Based on Heterodimer Energies: The Case of <i>N</i>,<i>N</i>′‑Diphenylureas and Triphenylphosphine Oxide
Diarylureas
frequently assemble into structures with one-dimensional
H-bonded chain motifs. Herein, we examine the ability of triphenylphosphine
oxide (TPPO) to disrupt the H-bonding motif in 14 different <i>meta</i>-substituted <i>N</i>,<i>N</i>′-diphenylureas
(mXPU) and form cocrystals; 1:1 mXPU:TPPO cocrystals were obtained
in 9 of 14 cases examined (64% success rate). Cocrystals adopt five
different lattice types, all of which show unsymmetrical H-bonded
[R<sub>2</sub><sup>1</sup>(6)] dimers
between the urea hydrogens and the phosphine oxygen. Heterodimer (mXPU···TPPO)
and homodimer (mXPU···mXPU) interaction energies, Δ<i>E</i><sub>int</sub>, calculated using density functional theory
at the B3LYP/6-31G(d,p) level were used to rationalize the experimental
results. A clear trend was observed in which cocrystals were experimentally
realized only in cases in which the differences in heterodimer versus
homodimer energy, ΔΔ<i>E</i><sub>int</sub>,
were greater than ∼5.3–6 kcal/mol. Although calculated
interaction energies are a simplified
measure of the system thermodynamics, these results suggest that the
relative ΔΔ<i>E</i><sub>int</sub> between heterodimers
and homodimers is
a good predictor of cocrystal formation in this system