64 research outputs found

    A Gene Optimization Strategy that Enhances Production of Fully Functional P-Glycoprotein in Pichia pastoris

    Get PDF
    Structural and biochemical studies of mammalian membrane proteins remain hampered by inefficient production of pure protein. We explored codon optimization based on highly expressed Pichia pastoris genes to enhance co-translational folding and production of P-glycoprotein (Pgp), an ATP-dependent drug efflux pump involved in multidrug resistance of cancers.Codon-optimized "Opti-Pgp" and wild-type Pgp, identical in primary protein sequence, were rigorously analyzed for differences in function or solution structure. Yeast expression levels and yield of purified protein from P. pastoris (∼130 mg per kg cells) were about three-fold higher for Opti-Pgp than for wild-type protein. Opti-Pgp conveyed full in vivo drug resistance against multiple anticancer and fungicidal drugs. ATP hydrolysis by purified Opti-Pgp was strongly stimulated ∼15-fold by verapamil and inhibited by cyclosporine A with binding constants of 4.2±2.2 µM and 1.1±0.26 µM, indistinguishable from wild-type Pgp. Maximum turnover number was 2.1±0.28 µmol/min/mg and was enhanced by 1.2-fold over wild-type Pgp, likely due to higher purity of Opti-Pgp preparations. Analysis of purified wild-type and Opti-Pgp by CD, DSC and limited proteolysis suggested similar secondary and ternary structure. Addition of lipid increased the thermal stability from T(m) ∼40 °C to 49 °C, and the total unfolding enthalpy. The increase in folded state may account for the increase in drug-stimulated ATPase activity seen in presence of lipids.The significantly higher yields of protein in the native folded state, higher purity and improved function establish the value of our gene optimization approach, and provide a basis to improve production of other membrane proteins

    Proton Motive Force-Dependent Hoechst 33342 Transport by the ABC Transporter LmrA of Lactococcus lactis

    Get PDF
    The fluorescent compound Hoechst 33342 is a substrate for many multidrug resistance (MDR) transporters and is widely used to characterize their transport activity. We have constructed mutants of the adenosine triphosphate (ATP) binding cassette (ABC)-type MDR transporter LmrA of Lactococcus lactis that are defective in ATP hydrolysis. These mutants and wild-type LmrA exhibited an atypical behavior in the Hoechst 33342 transport assay. In membrane vesicles, Hoechst 33342 transport was shown to be independent of the ATPase activity of LmrA, and it was not inhibited by orthovanadate but sensitive to uncouplers that collapse the proton gradient and to N,N'-dicyclohexylcarbodiimide, an inhibitor of the F0F1-ATPase. In contrast, transport of Hoechst 33342 by the homologous, heterodimeric MDR transporter LmrCD showed a normal ATP dependence and was insensitive to uncouplers of the proton gradient. With intact cells, expression of LmrA resulted in an increased rate of Hoechst 33342 influx while LmrCD caused a decrease in the rate of Hoechst 33342 influx. Cellular toxicity assays using a triple knockout strain, i.e., L. lactis ΔlmrA ΔlmrCD, demonstrate that expression of LmrCD protects cells against the growth inhibitory effects of Hoechst 33342, while in the presence of LmrA, cells are more susceptible to Hoechst 33342. Our data demonstrate that the LmrA-mediated Hoechst 33342 transport in membrane vesicles is influenced by the transmembrane pH gradient due to a pH-dependent partitioning of Hoechst 33342 into the membrane.

    Anion–Anion Interactions in the Crystal Packing of Functionalized Methanide Anions: An Experimental and Computational Study

    No full text
    Examination of the crystal structures of (Me<sub>4</sub>N)­(dcnm) (<b>1</b>), (Me<sub>4</sub>N)­(dcnom) (<b>2</b>), and (Me<sub>4</sub>N)­(nbdm) (<b>3</b>) [dcnm = dicyanonitrosomethanide, dcnom = dicyanonitromethanide, nbdm = nitroso-<i>N</i>,<i>N</i>-bis­(dicyanomethanide)] reveals the anions pack in an unusual columnar array, with distances between the planar species suggestive of π–π stacking. This columar packing motif is not observed in the crystal structures of (Me<sub>4</sub>N)­(ccnm) (<b>4</b>) and (Me<sub>4</sub>N)­(ccnom) (<b>6</b>) (ccnm = carbamoylcyanonitrosomethanide, ccnom = carbamoylcyanonitromethanide), in which hydrogen bonding between anions is the dominant supramolecular interaction. Ab initio calculations performed at the HF and MP2 levels of theory on ionic clusters of varying size further explored the nature and strength of anionic interactions observed in crystal structures. The first syntheses of the nbdm and ccnom anions are also reported
    corecore