167 research outputs found

    Is small mammal mycophagy relevant for truffle cultivation?

    Get PDF
    The role of small mammal mycophagy as vectors of hypogeous fungi is well established. However, little is known about dispersal of gourmet truffle species by mammal vectors, or about the potential role of mycophagy in truffle plantations. We hypothesize that small mammal mycophagy contributes to the productivity of truffle plantations by providing inoculum for truffle mycelium establishment and mating. Spread of non-desired competitors of gourmet truffles is a potential adverse effect of small mammal mycophagy

    The COMPASS self-check tool. Enhancing organizational learning for responsible innovation through self-assessment

    Get PDF
    In the face of increasingly complex and dynamic environments, companies are continuously challenged to learn and adapt, particularly in the area of responsible innovation. This chapter introduces a diagnostic self-assessment tool to support companies in facing these challenges by drawing on insights from organizational learning and responsible innovation. In the context of innovation, self-assessment can enhance organizational learning with a view to foster an organizational culture and innovation capabilities that in turn have a positive effect on innovation performance measures. The COMPASS self-check tool therefore aims to enable learning by translating the concept of responsible innovation into concrete corporate practices and policies, ascribing them to specific business functions. The systematic deconstruction of responsible innovation into observable practices allows the COMPASS self-check tool to go beyond existing learning tools and supports companies in aligning responsible innovation with business realities

    Talking Different Languages: The Role of Plant-Plant Communication When an Invader Beats up a Strange Neighborhood

    Get PDF
    Communication through airborne volatile organic compounds (VOCs) and root exudates plays a vital role in the multifarious interactions of plants. Common ragweed (Ambrosia artemesiifolia L.) is one of the most troublesome invasive alien species in agriculture. Below- and aboveground chemical interactions of ragweed with crops might be an important factor in the invasive species' success in agriculture. In laboratory experiments, we investigated the contribution of intra- and interspecific airborne VOCs and root exudates of ragweed to its competitiveness. Wheat, soybean, and maize were exposed to VOCs emitted from ragweed and vice versa, and the adaptation response was measured through plant morphological and physiological traits. We observed significant changes in plant traits of crops in response to ragweed VOCs, characterized by lower biomass production, lower specific leaf area, or higher chlorophyll contents. After exposure to ragweed VOCs, soybean and wheat produced significantly less aboveground dry mass, whereas maize did not. Ragweed remained unaffected when exposed to VOCs from the crops or a conspecific. All crops and ragweed significantly avoided root growth toward the root exudates of ragweed. The study shows that the plant response to either above- or belowground chemical cues is highly dependent on the identity of the neighbor, pointing out the complexity of plant-plant communication in plant communities

    Large Extracellular Vesicles: Have We Found the Holy Grail of Inflammation?

    Get PDF
    The terms microparticles (MPs) and microvesicles (MVs) refer to large extracellular vesicles (EVs) generated from a broad spectrum of cells upon its activation or death by apoptosis. The unique surface antigens of MPs/MVs allow for the identification of their cellular origin as well as its functional characterization. Two basic aspects of MP/MV functions in physiology and pathological conditions are widely considered. Firstly, it has become evident that large EVs have strong procoagulant properties. Secondly, experimental and clinical studies have shown that MPs/MVs play a crucial role in the pathophysiology of inflammation-associated disorders. A cardinal feature of these disorders is an enhanced generation of platelets-, endothelial-, and leukocyte-derived EVs. Nevertheless, anti-inflammatory effects of miscellaneous EV types have also been described, which provided important new insights into the large EV-inflammation axis. Advances in understanding the biology of MPs/MVs have led to the preparation of this review article aimed at discussing the association between large EVs and inflammation, depending on their cellular origin

    Labeling of mesenchymal stromal cells with iron oxide-poly(l-lactide) nanoparticles for magnetic resonance imaging: uptake, persistence, effects on cellular function and magnetic resonance imaging properties

    Get PDF
    Background aims. Mesenchymal stromal cells (MSC) are the focus of research in regenerative medicine aiming at the regulatory approval of these cells for specific indications. To cope with the regulatory requirements for somatic cell therapy, novel approaches that do not interfere with the natural behavior of the cells are necessary. In this context in vivo magnetic resonance imaging (MRI) of labeled MSC could be an appropriate tool. Cell labeling for MRI with a variety of different iron oxide preparations is frequently published. However, most publications lack a comprehensive assessment of the noninterference of the contrast agent with the functionality of the labeled MSC, which is a prerequisite for the validity of cell-tracking via MRI. Methods.We studied the effects of iron oxide-poly(L-lactide) nanoparticles in MSC with flow cytom-etry, transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), Prussian blue staining, CyQuant® proliferation testing, colony-forming unit-fibroblast (CFU-F) assays, flow chamber adhesion testing, immuno-logic tests and differentiation tests. Furthermore iron-labeled MSC were studied by MRI in agarose phantoms and Wistar rats. Results. It could be demonstrated that MSC show rapid uptake of nanoparticles and long-lasting intracellular persistence in the endosomal compartment. Labeling of the MSC with these particles has no influence on viability, differentiation, clonogenicity, proliferation, adhesion, phenotype and immunosuppressive properties. They show excellent MRI properties in agarose phantoms and after subcutaneous implantation in rats over several weeks. Conclusions. These particles qualify for studying MSC homing and trafficking via MRI

    A participatory, multidimensional and modular impact assessment methodology for citizen science projects

    Get PDF
    This paper presents a multidimensional methodology for assessing the scientific, social, economic, political and environmental impacts of citizens science (CS) projects. Besides these five areas of impact, the methodology considers also the transformative potential of the CS projects, i.e. the degree to which a CS project can help to change, alter, or replace current systems, the business-as-usual, in one or more fields such as science production or environmental protection. The methodology is designed to be modular and flexible so to adapt to the specificities of different CS projects and offers operational tools for its use by non-experts. The paper also describes the co-design process followed for its development and discusses the main lessons learned as emerged during its testing with 16 citizen science projects

    Novel non-heteroarylpyrimidine (HAP) capsid assembly modifiers have a different mode of action from HAPs in vitro

    Get PDF
    One of the most promising viral targets in current hepatitis B virus (HBV) drug development is the core protein due to its multiple roles in the viral life cycle. Here we investigated the differences in the mode of action and antiviral activity of representatives of six different capsid assembly modifier (CAM) scaffolds: three from the well-characterized scaffolds heteroarylpyrimidine (HAP), sulfamoylbenzamide (SBA), and phenylpropenamide (PPA), and three from novel scaffolds glyoxamide-pyrrolamide (GPA), pyrazolyl-thiazole (PT), and dibenzo-thiazepin-2-one (DBT). The target activity and antiviral efficacy of the different CAMs were tested in biochemical and cellular assays. Analytical size exclusion chromatography and transmission electron microscopy showed that only the HAP compound induced formation of aberrant non-capsid structures (class II mode of action), while the remaining CAMs did not affect capsid gross morphology (class I mode of action). Intracellular lysates from the HepAD38 cell line, inducibly replicating HBV, showed no reduction in the quantities of intracellular core protein or capsid after treatment with SBA, PPA, GPA, PT, or DBT compounds; however HAP-treatment led to a profound decrease in both. Additionally, immunofluorescence staining of compound-treated HepAD38 cells showed that all non-HAP CAMs led to a shift in the equilibrium of HBV core antigen (HBcAg) towards complete cytoplasmic staining, while the HAP induced accumulation of HBcAg aggregates in the nucleus. Our study demonstrates that the novel scaffolds GPA, PT, and DBT exhibit class I modes of action, alike SBA and PPA, whereas HAP remains the only scaffold belonging to class II inhibitors

    Molecular matched targeted therapies for primary brain tumors—a single center retrospective analysis

    Get PDF
    PURPOSE: Molecular diagnostics including next generation gene sequencing are increasingly used to determine options for individualized therapies in brain tumor patients. We aimed to evaluate the decision-making process of molecular targeted therapies and analyze data on tolerability as well as signals for efficacy. METHODS: Via retrospective analysis, we identified primary brain tumor patients who were treated off-label with a targeted therapy at the University Hospital Frankfurt, Goethe University. We analyzed which types of molecular alterations were utilized to guide molecular off-label therapies and the diagnostic procedures for their assessment during the period from 2008 to 2021. Data on tolerability and outcomes were collected. RESULTS: 413 off-label therapies were identified with an increasing annual number for the interval after 2016. 37 interventions (9%) were targeted therapies based on molecular markers. Glioma and meningioma were the most frequent entities treated with molecular matched targeted therapies. Rare entities comprised e.g. medulloblastoma and papillary craniopharyngeoma. Molecular targeted approaches included checkpoint inhibitors, inhibitors of mTOR, FGFR, ALK, MET, ROS1, PIK3CA, CDK4/6, BRAF/MEK and PARP. Responses in the first follow-up MRI were partial response (13.5%), stable disease (29.7%) and progressive disease (46.0%). There were no new safety signals. Adverse events with fatal outcome (CTCAE grade 5) were not observed. Only, two patients discontinued treatment due to side effects. Median progression-free and overall survival were 9.1/18 months in patients with at least stable disease, and 1.8/3.6 months in those with progressive disease at the first follow-up MRI. CONCLUSION: A broad range of actionable alterations was targeted with available molecular therapeutics. However, efficacy was largely observed in entities with paradigmatic oncogenic drivers, in particular with BRAF mutations. Further research on biomarker-informed molecular matched therapies is urgently necessary. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11060-022-04049-w

    Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function

    Get PDF
    Ion selectivity is a defining feature of a given ion channel and is considered immutable. Here we show that ion selectivity of the lysosomal ion channel TPC2, which is hotly debated (Calcraft et al., 2009;Guo et al., 2017;Jha et al., 2014;Ruas et al., 2015;Wang et al., 2012), depends on the activating ligand. A high-throughput screen identified two structurally distinct TPC2 agonists. One of these evoked robust Ca2+-signals and non-selective cation currents, the other weaker Ca2+-signals and Na+-selective currents. These properties were mirrored by the Ca2+ mobilizing messenger, NAADP and the phosphoinositide, PI(3,5)P-2, respectively. Agonist action was differentially inhibited by mutation of a single TPC2 residue and coupled to opposing changes in lysosomal pH and exocytosis. Our findings resolve conflicting reports on the permeability and gating properties of TPC2 and they establish a new paradigm whereby a single ion channel mediates distinct, functionally-relevant ionic signatures on demand
    corecore