70 research outputs found

    Alternativní zemědělství - informační bulletin č.7

    Get PDF
    Témata informačního bulletinu č.7 jsou: Vyhodnocení výnosů zemědělských plodin v roce 1991 u organicky hospodařících zemědělců svazu PRO-BIO. Nutnost moření osiva z hlediska alternativního zemědělství. Využití přirozených surovin v alternativním zemědělství. Mechanická regulace plevelů. Možnosti realizace alternativního zemědělství z hlediska ochrany rostlin. Regulace hraboše polního bez chemie. Úvod k připravované knize "Ekologická východiska zemědělství". Stáj s hlubokou podestýlkou pro dojnice z hlediska etologie a ekonomiky. Zelené hnojení. Organické vinohradnictví

    Interspecific common bean population derived from Phaseolus acutifolius using a bridging genotype demonstrate useful adaptation to heat tolerance

    Get PDF
    Common bean ( Phaseolus vulgaris L.) is an important legume crop worldwide and is a major nutrient source in the tropics. Common bean reproductive development is strongly affected by heat stress, particularly overnight temperatures above 20°C. The desert Tepary bean ( Phaseolus acutifolius A. Gray) offers a promising source of adaptative genes due to its natural acclimation to arid conditions. Hybridization between both species is challenging, requiring in vitro embryo rescue and multiple backcrossing cycles to restore fertility. This labor-intensive process constrains developing mapping populations necessary for studying heat tolerance. Here we show the development of an interspecific mapping population using a novel technique based on a bridging genotype derived from P. vulgaris , P. Acutifolius and P. parvifolius named VAP1 and is compatible with both common and tepary bean. The population was based on two wild P. acutifolius accessions, repeatedly crossed with Mesoamerican elite common bush bean breeding lines. The population was genotyped through genotyping-by-sequencing and evaluated for heat tolerance by genome-wide association studies. We found that the population harbored 59.8% introgressions from wild tepary, but also genetic regions from Phaseolus parvifolius , a relative represented in some early bridging crosses. We found 27 significative quantitative trait loci, nine located inside tepary introgressed segments exhibiting allelic effects that reduced seed weight, and increased the number of empty pods, seeds per pod, stem production and yield under high temperature conditions. Our results demonstrate that the bridging genotype VAP1 can intercross common bean with tepary bean and positively influence the physiology of derived interspecific lines, which displayed useful variance for heat tolerance

    Applying the PROSA reference architecture to enable the interaction between the worker and the industrial robot: Case Study: One worker interaction with a dual-arm industrial robot

    No full text
    Involving an industrial robot in a close physical interaction with the worker became quite possible, as a result of the availability of different collaborative industrial robots in the market. The physical cooperation between the industrial robot and the worker usually done under the umbrella of the flexible manufacturing paradigm, where both the industrial robot and the worker need to change their tasks fast and efficiently, to cope with the changes in the manufacturing process. This means that a reliable manufacturing control system must stand behind this physical interaction to achieve the proper communication interaction. A holonic control architecture is an ideal solution for this problem. Therefore, during this research we study the most commonly applied model of the holonic control architecture, then we apply this architecture on our case study, where one worker cooperates with a dual-arm industrial robot to build and produce any new product. Also the research uses the worker's hand gesture recognition as a method to interact with the industrial robot during the execution of a cooperative production scenario

    A novel implementation approach for resource holons in reconfigurable product manufacturing cell

    No full text
    Holonic Control Architecture is a successful solution model for reconfigurable manufacturing problems. Two well-known different technologies have been used separately to implement the holonic control model. The first technology is IEC 61499 standard, and the second is autonomous reactive agent. Both of the previous mentioned technologies have its own pros and cons. Therefore this research is merging the two technologies together in one solution body, to magnifying their pros and reduce their cons. Ultimately; it provides a novel implementation model for the manufacturing holons, to be followed in similar reconfigurable manufacturing problems. A human worker in cooperation with a safe industrial robot, has been selected as a case study of a reconfigurable manufacturing problem. The proposed holonic control solution has been applied to the case study, to evaluate the ability of the solution to satisfy the requirements of the case study. The results show the ability of the proposed control solution to provide a flexible physical and logical interaction framework, which can be scaled over more workers in cooperation with more industrial robots

    An ontology-based approach to enable knowledge representation and reasoning in worker-cobot agile manufacturing

    No full text
    There is no doubt that the rapid development in robotics technology has dramatically changed the interaction model between the Industrial Robot (IR) and the worker. As the current robotic technology has afforded very reliable means to guarantee the physical safety of the worker during a close proximity interaction with the IR. Therefore, new forms of cooperation between the robot and the worker can now be achieved. Collaborative/Cooperative robotics is the new branch of industrial robotics which empowers the idea of cooperative manufacturing. Cooperative manufacturing significantly depends on the existence of a collaborative/cooperative robot (cobot). A cobot is usually a Light-Weight Robot (LWR) which is capable of operating safely with the human co-worker in a shared work environment. This is in contrast with the conventional IR which can only operate in isolation from the worker workspace, due to the fact that the conventional IR can manipulate very heavy objects, which makes it so dangerous to operate in direct contact with the worker. There is a slight difference between the definition of collaboration and cooperation in robotics. In cooperative robotics, both the worker and the robot are performing tasks over the same product in the same shared workspace but not simultaneously. Collaborative robotics has a similar definition, except that the worker and the robot are performing a simultaneous task. Gathering the worker and the cobot in the same manufacturing workcell can provide an easy and cheap method to flexibly customize the production. Moreover, to adapt with the production demands in the real time of production, without the need to stop or to modify the production operations. There are many challenges and problems that can be addressed in the cooperative manufacturing field. However, one of the most important challenges in this field is the representation of the cooperative manufacturing environment and components. Thus, in order to accomplish the cooperative manufacturing concept, a proper approach is required to describe the shared environment between the worker and the cobot. The cooperative manufacturing shared environment includes the cobot, the co-worker, and other production components such as the product itself. Furthermore, the whole cooperative manufacturing system components need to communicate and share their knowledge, to reason and process the shared information, which eventually gives the control solution the capability of obtaining collective manufacturing decisions. Putting into consideration that the control solution should also provide a natural language which is human readable and in the same time can be understood by the machine (i.e., the cobot). Accordingly, a distributed control solution which combines an ontology-based Multi-Agent System (MAS) and a Business Rule Management System (BRMS) is proposed, in order to solve the mentioned challenges in the cooperative manufacturing, which are: manufacturing knowledge representation, sharing, and reasoning

    A holonic control system design for a human & industrial robot cooperative workcell

    No full text
    As a result of the rapid development in industrial robot technology, a close safe cooperation with the human worker became quite possible. Accordingly an appropriate control system must exist to provide an intelligent tool for their information interaction. Therefore this paper is proposing a novel implementation model for a holonic control system solution. The ultimate goal of the proposed holonic control system is to adeptly manage the information exchange between an industrial robot in cooperation with a human worker in a production workcell. The novelty in the proposed holonic solution is that it merges the advantages of two well-known control architectures. The two architectures are IEC 61499 standard and autonomous reactive agent model. IEC 61499 has been used to implement the holon physical component, to handle the physical input/output (I/O) from/to an industrial robot or a human worker. Simultaneously autonomous reactive agent technology has been used to implement the holon communication component, to handle the information exchange between an industrial robot holon and a worker holon

    Flow shop scheduling problem and solution in cooperative robotics - case-study: One cobot in cooperation with one worker

    No full text
    This research combines between two different manufacturing concepts. On the one hand, flow shop scheduling is a well-known problem in production systems. The problem appears when a group of jobs shares the same processing sequence on two or more machines sequentially. Flow shop scheduling tries to find the appropriate solution to optimize the sequence order of this group of jobs over the existing machines. The goal of flow shop scheduling is to obtain the continuity of the flow of the jobs over the machines. This can be obtained by minimizing the delays between two consequent jobs, therefore the overall makespan can be minimized. On the other hand, collaborative robotics is a relatively recent approach in production where a collaborative robot (cobot) is capable of a close proximity cooperation with the human worker to increase the manufacturing agility and flexibility. The simplest case-study of a collaborative workcell is one cobot in cooperation with one worker. This collaborative workcell can be seen as a special case of the shop flow scheduling problem, where the required time from the worker to perform a specific job is unknown and variable. Therefore, during this research, we implement an intelligent control solution which can optimize the flow shop scheduling problem over the previously mentioned case-study
    corecore