97 research outputs found
Saltatory drift in a randomly driven two-wave potential
Dynamics of a classical particle in a one-dimensional, randomly driven
potential is analysed both analytically and numerically. The potential
considered here is composed of two identical spatially-periodic saw-tooth-like
components, one of which is externally driven by a random force. We show that
under certain conditions the particle may travel against the averaged external
force performing a saltatory unidirectional drift with a constant velocity.
Such a behavior persists also in situations when the external force averages
out to zero. We demonstrate that the physics behind this phenomenon stems from
a particular behavior of fluctuations in random force: upon reaching a certain
level, random fluctuations exercise a locking function creating points of
irreversibility which the particle can not overpass. Repeated (randomly) in
each cycle, this results in a saltatory unidirectional drift. This mechanism
resembles the work of an escapement-type device in watches. Considering the
overdamped limit, we propose simple analytical estimates for the particle's
terminal velocity.Comment: 14 pages, 6 figures; appearing in Journal of Physics: Condensed
Matter, special issue on Molecular Motors and Frictio
Unravelling the optical responses of nanoplasmonic mirror-on-mirror metamaterials
Mirror-on-mirror platforms based on arrays of metallic nanoparticles, arranged top-down or self-assembled on a thin metallic film, have interesting optical properties. Interaction of localized surface-plasmons in nanoparticles with propagating surface-plasmons in the film underpins the exotic features of such platforms. Here, we present a comprehensive theoretical framework which emulates such a system using a five-layer-stack model and calculate its reflectance, transmittance, and absorbance spectra. The theory rests on dipolar quasi-static approximations incorporating image-forces and effective medium theory. Systematically tested against full-wave simulations, this simple approach proves to be adequate within its obvious applicability limits. It is used to study optical signals as a function of nanoparticle dimensions, interparticle separation, metal film thickness, the gap between the film and nanoparticles, and incident light characteristics. Several peculiar features are found, e.g., quenching of reflectivity in certain frequency domains or shift of the reflectivity spectra. Schemes are proposed to tailor those as functions of the mentioned parameters. Calculating the system's optical responses in seconds, as compared to much longer running simulations, this theory helps to momentarily unravel the role of each system parameter in light reflection, transmission, and absorption, facilitating thereby the design and optimisation of novel mirror-on-mirror systems
Ballistic nanofriction
Sliding parts in nanosystems such as Nano ElectroMechanical Systems (NEMS)
and nanomotors, increasingly involve large speeds, and rotations as well as
translations of the moving surfaces; yet, the physics of high speed nanoscale
friction is so far unexplored. Here, by simulating the motion of drifting and
of kicked Au clusters on graphite - a workhorse system of experimental
relevance -- we demonstrate and characterize a novel "ballistic" friction
regime at high speed, separate from drift at low speed. The temperature
dependence of the cluster slip distance and time, measuring friction, is
opposite in these two regimes, consistent with theory. Crucial to both regimes
is the interplay of rotations and translations, shown to be correlated in slow
drift but anticorrelated in fast sliding. Despite these differences, we find
the velocity dependence of ballistic friction to be, like drift, viscous
Atomic scale engines: Cars and wheels
We introduce a new approach to build microscopic engines on the atomic scale
that move translationally or rotationally and can perform useful functions such
as pulling of a cargo. Characteristic of these engines is the possibility to
determine dynamically the directionality of the motion. The approach is based
on the transformation of the fed energy to directed motion through a dynamical
competition between the intrinsic lengths of the moving object and the
supporting carrier.Comment: 4 pages, 3 figures (2 in color), Phys. Rev. Lett. (in print
Molecular motor that never steps backwards
We investigate the dynamics of a classical particle in a one-dimensional
two-wave potential composed of two periodic potentials, that are
time-independent and of the same amplitude and periodicity. One of the periodic
potentials is externally driven and performs a translational motion with
respect to the other. It is shown that if one of the potentials is of the
ratchet type, translation of the potential in a given direction leads to motion
of the particle in the same direction, whereas translation in the opposite
direction leaves the particle localized at its original location. Moreover,
even if the translation is random, but still has a finite velocity, an
efficient directed transport of the particle occurs.Comment: 4 pages, 5 figures, Phys. Rev. Lett. (in print
Crack-Like Processes Governing the Onset of Frictional Slip
We perform real-time measurements of the net contact area between two blocks
of like material at the onset of frictional slip. We show that the process of
interface detachment, which immediately precedes the inception of frictional
sliding, is governed by three different types of detachment fronts. These
crack-like detachment fronts differ by both their propagation velocities and by
the amount of net contact surface reduction caused by their passage. The most
rapid fronts propagate at intersonic velocities but generate a negligible
reduction in contact area across the interface. Sub-Rayleigh fronts are
crack-like modes which propagate at velocities up to the Rayleigh wave speed,
VR, and give rise to an approximate 10% reduction in net contact area. The most
efficient contact area reduction (~20%) is precipitated by the passage of slow
detachment fronts. These fronts propagate at anomalously slow velocities, which
are over an order of magnitude lower than VR yet orders of magnitude higher
than other characteristic velocity scales such as either slip or loading
velocities. Slow fronts are generated, in conjunction with intersonic fronts,
by the sudden arrest of sub-Rayleigh fronts. No overall sliding of the
interface occurs until either of the slower two fronts traverses the entire
interface, and motion at the leading edge of the interface is initiated. Slip
at the trailing edge of the interface accompanies the motion of both the slow
and sub-Rayleigh fronts. We might expect these modes to be important in both
fault nucleation and earthquake dynamics.Comment: 19 page, 5 figures, to appear in International Journal of Fractur
Surface Roughness and Effective Stick-Slip Motion
The effect of random surface roughness on hydrodynamics of viscous
incompressible liquid is discussed. Roughness-driven contributions to
hydrodynamic flows, energy dissipation, and friction force are calculated in a
wide range of parameters. When the hydrodynamic decay length (the viscous wave
penetration depth) is larger than the size of random surface inhomogeneities,
it is possible to replace a random rough surface by effective stick-slip
boundary conditions on a flat surface with two constants: the stick-slip length
and the renormalization of viscosity near the boundary. The stick-slip length
and the renormalization coefficient are expressed explicitly via the
correlation function of random surface inhomogeneities. The effective
stick-slip length is always negative signifying the effective slow-down of the
hydrodynamic flows by the rough surface (stick rather than slip motion). A
simple hydrodynamic model is presented as an illustration of these general
hydrodynamic results. The effective boundary parameters are analyzed
numerically for Gaussian, power-law and exponentially decaying correlators with
various indices. The maximum on the frequency dependence of the dissipation
allows one to extract the correlation radius (characteristic size) of the
surface inhomogeneities directly from, for example, experiments with torsional
quartz oscillators.Comment: RevTeX4, 14 pages, 3 figure
Velocity tuning of friction with two trapped atoms
Our ability to control friction remains modest, as our understanding of the underlying microscopic processes is incomplete. Atomic force experiments have provided a wealth of results on the dependence of nanofriction on structure velocity and temperature but limitations in the dynamic range, time resolution, and control at the single-atom level have hampered a description from first principles. Here, using an ion-crystal system with single-atom, single-substrate-site spatial and single-slip temporal resolution we measure the friction force over nearly five orders of magnitude in velocity, and contiguously observe four distinct regimes, while controlling temperature and dissipation. We elucidate the interplay between thermal and structural lubricity for two coupled atoms, and provide a simple explanation in terms of the Peierls–Nabarro potential. This extensive control at the atomic scale enables fundamental studies of the interaction of many-atom surfaces, possibly into the quantum regime
Patterns and flow in frictional fluid dynamics
Pattern-forming processes in simple fluids and suspensions have been studied extensively, and the basic displacement structures, similar to viscous fingers and fractals in capillary dominated flows, have been identified. However, the fundamental displacement morphologies in frictional fluids and granular mixtures have not been mapped out. Here we consider Coulomb friction and compressibility in the fluid dynamics, and discover surprising responses including highly intermittent flow and a transition to quasi-continuodynamics. Moreover, by varying the injection rate over several orders of magnitude, we characterize new dynamic modes ranging from stick-slip bubbles at low rate to destabilized viscous fingers at high rate. We classify the fluid dynamics into frictional and viscous regimes, and present a unified description of emerging morphologies in granular mixtures in the form of extended phase diagrams
- …