1,615 research outputs found

    The dynamics of thin vibrated granular layers

    Full text link
    We describe a series of experiments and computer simulations on vibrated granular media in a geometry chosen to eliminate gravitationally induced settling. The system consists of a collection of identical spherical particles on a horizontal plate vibrating vertically, with or without a confining lid. Previously reported results are reviewed, including the observation of homogeneous, disordered liquid-like states, an instability to a `collapse' of motionless spheres on a perfect hexagonal lattice, and a fluctuating, hexagonally ordered state. In the presence of a confining lid we see a variety of solid phases at high densities and relatively high vibration amplitudes, several of which are reported for the first time in this article. The phase behavior of the system is closely related to that observed in confined hard-sphere colloidal suspensions in equilibrium, but with modifications due to the effects of the forcing and dissipation. We also review measurements of velocity distributions, which range from Maxwellian to strongly non-Maxwellian depending on the experimental parameter values. We describe measurements of spatial velocity correlations that show a clear dependence on the mechanism of energy injection. We also report new measurements of the velocity autocorrelation function in the granular layer and show that increased inelasticity leads to enhanced particle self-diffusion.Comment: 11 pages, 7 figure

    Non-equilibrium two-phase coexistence in a confined granular layer

    Full text link
    We report the observation of the homogenous nucleation of crystals in a dense layer of steel spheres confined between two horizontal plates vibrated vertically. Above a critical vibration amplitude, two-layer crystals with square symmetry were found to coexist in steady state with a surrounding granular liquid. By analogy to equilibrium hard sphere systems, the phase behavior can be explained through entropy maximization. However, dramatic non-equilibrium effects are present, including a significant difference in the granular temperatures of the two phases.Comment: 4 pages, 3 figures, RevTex4 forma

    Charge-Mediated Recognition of N-Terminal Tryptophan in Aqueous Solution by a Synthetic Host

    Get PDF
    The molecular recognition of peptides and proteins in aqueous solution by designed molecules remains an elusive goal with broad implications for basic biochemical research and for sensors and separations technologies. This paper describes the recognition of N-terminal tryptophan in aqueous solution by the synthetic host cucurbit[8]uril (Q8). Q8 is known to form 1:1:1 heteroternary complexes with methyl viologen (MV) and a second aromatic guest. Here, the complexes of Q8·MV with (i) the four natural aromatic α-amino acids, (ii) four singly charged tryptophan derivatives, and (iii) four tryptophan-containing tripeptides were characterized by isothermal titration calorimetry, mass spectrometry, and UV−visible, fluorescence, and 1H NMR spectroscopy. We find that Q8·MV binds Trp−Gly−Gly with high affinity (Ka = 1.3 × 105 M-1), with 6-fold specificity over Gly−Trp−Gly, and with 40-fold specificity over Gly−Gly−Trp. Analysis of the nine indole-containing compounds suggests that peptide recognition is mediated by the electrostatic charge(s) proximal to the indole, and that the mode of binding is consistent for these compounds. Complex formation is accompanied by the growth of a visible charge-transfer band and the quenching of indole fluorescence. These optical properties, combined with the stability and selectivity of this system, are promising for applications in sensing and separating specific peptides

    Supramolecular Chemistry: A Capstone Course

    Get PDF
    A fourth-year capstone course offers students an opportunity to integrate topics covered in the core disciplinary courses, to learn an advanced interdisciplinary topic, and to approach unfamiliar problems and literature. This article describes a fourth-year capstone course designed to incorporate components of faculty lectures, student seminars, and original, hands-on research projects in order to cover the topic of supramolecular chemistry in one semester with unusual depth. This approach should be applicable to other advanced topics in chemistry

    Renormalization constants of local operators for Wilson type improved fermions

    Full text link
    Perturbative and non-perturbative results are presented on the renormalization constants of the quark field and the vector, axial-vector, pseudoscalar, scalar and tensor currents. The perturbative computation, carried out at one-loop level and up to second order in the lattice spacing, is performed for a fermion action, which includes the clover term and the twisted mass parameter yielding results that are applicable for unimproved Wilson fermions, as well as for improved clover and twisted mass fermions. We consider ten variants of the Symanzik improved gauge action corresponding to ten different values of the plaquette coefficients. Non-perturbative results are obtained using the twisted mass Wilson fermion formulation employing two degenerate dynamical quarks and the tree-level Symanzik improved gluon action. The simulations are performed for pion masses in the range of 480 MeV to 260 MeV and at three values of the lattice spacing, a, corresponding to beta=3.9, 4.05, 4.20. For each renormalization factor computed non-perturbatively we subtract its perturbative O(a^2) terms so that we eliminate part of the cut-off artifacts. The renormalization constants are converted to MS-bar at a scale of mu=2 GeV. The perturbative results depend on a large number of parameters and are made easily accessible to the reader by including them in the distribution package of this paper, as a Mathematica input file.Comment: 36 pages, 11 figures and 6 tables. The results are included in electronic form (Mathematica files

    Self similar Barkhausen noise in magnetic domain wall motion

    Full text link
    A model for domain wall motion in ferromagnets is analyzed. Long-range magnetic dipolar interactions are shown to give rise to self-similar dynamics when the external magnetic field is increased adiabatically. The power spectrum of the resultant Barkhausen noise is of the form 1/ωα1/\omega^\alpha, where α≈1.5\alpha\approx 1.5 can be estimated from the critical exponents for interface depinning in random media.Comment: 7 pages, RevTex. To appear in Phys. Rev. Let
    • …
    corecore