30 research outputs found

    Molecular and biological characterization of a partitivirus from Paecilomyces variotii.

    Get PDF
    © 2023 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Paeciliomyces variotii is a thermo-tolerant, ubiquitous fungus commonly found in food products, indoor environments, soil and clinical samples. It is a well-known biocontrol agent used against phytopathogenic fungi and its metabolites have many industrial applications. Rare reports of P. variotii-related human infections have been found in the medical literature. In this study, we report for the first time the infection of P. variotii isolated from a soil sample collected in a rice field with a double-stranded RNA virus, Paeciliomyces variotii partitivirus 1 (PvPV-1) in the family Partitiviridae. P. variotii harboured icosahedral virus particles 30 nm in diameter with two dsRNA segments 1758 and 1356 bp long. Both dsRNA1 and dsRNA2 have a single open reading frame encoding proteins of 63 and 40 kDa, respectively. These proteins have significant similarity to the RNA-dependent RNA polymerase and capsid protein encoded by the genomic segments of several viruses from the family Partitiviridae. Phylogenetic analysis revealed that PvPV-1 belongs to the family Partitiviridae but in an unclassified group/genus, tentatively nominated Zetapartitivirus. PvPV-1 was found to increase the growth rate of the host fungus, as indicated by time course experiments performed on a range of different media for virus-infected and virus-free isogenic lines. Further, dual-culture assays performed for both isogenic lines confirmed the antagonistic potential of P. variotii against other phytopathogenic fungi. The findings of this study assist us in understanding P. variotii as a potential biocontrol agent, together with plant-fungus-virus interactions.Peer reviewe

    Molecular and biological characterization of a novel partitivirus from Talaromyces pinophilus

    Get PDF
    © 2024 The Author(s). Published by Elsevier B.V. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Talaromyces spp. have a worldwide distribution, are ecologically diverse and have been isolated from numerous different substrates. Talaromyces spp. are considered biotechnologically important due to their ability to produce a range of enzymes and pigments. Talaromyces pinophilus, belonging to genus Talaromyces and family Trichocomaceae, is known for producing several important bioactive metabolites. Here we report the isolation and characterisation of a partitivirus from T. pinophilus which we have nominated Talaromyces pinophilus partitivirus-1 (TpPV-1). TpPV-1 possesses a genome consisting of three double stranded (ds) RNA segments i.e., dsRNAs1-3, 1824 bp, 1638 bp and 1451 bp respectively, which are encapsidated in icosahedral particles 35 nm in diameter. Both dsRNA1 and dsRNA2 contain a single open reading frame (ORF) encoding respectively a 572 amino acid (aa) protein of 65 kDa and a 504 aa protein of 50 kDa. The third segment (dsRNA3) is potentially a satellite RNA. Phylogenetic analysis revealed that the TpPV-1 belongs to the family Partitiviridae in the proposed genus Zetapartitivirus. TpPV-1 infection decreases the mycelial growth rate of the host fungus and alters pigmentation as indicated by time course experiments performed on a range of different solid media comparing virus-infected and virus-free isogenic lines. This is the first report of mycovirus infection in T. pinophilus and may provide insights into understanding the effect of the mycovirus on the production of enzymes and pigments by the host fungus.Peer reviewe

    FLDS: A Comprehensive dsRNA Sequencing Method for Intracellular RNA Virus Surveillance

    No full text

    Chrysoviruses in <i>Magnaporthe oryzae</i>

    No full text
    Magnaporthe oryzae, the fungus that causes rice blast, is the most destructive pathogen of rice worldwide. A number of M. oryzae mycoviruses have been identified. These include Magnaporthe oryzae. viruses 1, 2, and 3 (MoV1, MoV2, and MoV3) belonging to the genus, Victorivirus, in the family, Totiviridae; Magnaporthe oryzae. partitivirus 1 (MoPV1) in the family, Partitiviridae; Magnaporthe oryzae. chrysovirus 1 strains A and B (MoCV1-A and MoCV1-B) belonging to cluster II of the family, Chrysoviridae; a mycovirus related to plant viruses of the family, Tombusviridae (Magnaporthe oryzae. virus A); and a (+)ssRNA mycovirus closely related to the ourmia-like viruses (Magnaporthe oryzae. ourmia-like virus 1). Among these, MoCV1-A and MoCV1-B were the first reported mycoviruses that cause hypovirulence traits in their host fungus, such as impaired growth, altered colony morphology, and reduced pigmentation. Recently we reported that, although MoCV1-A infection generally confers hypovirulence to fungi, it is also a driving force behind the development of physiological diversity, including pathogenic races. Another example of modulated pathogenicity caused by mycovirus infection is that of Alternaria alternata chrysovirus 1 (AaCV1), which is closely related to MoCV1-A. AaCV1 exhibits two contrasting effects: Impaired growth of the host fungus while rendering the host hypervirulent to the plant, through increased production of the host-specific AK-toxin. It is inferred that these mycoviruses might be epigenetic factors that cause changes in the pathogenicity of phytopathogenic fungi

    Discovery, Genomic Sequence Characterization and Phylogenetic Analysis of Novel RNA Viruses in the Turfgrass Pathogenic Colletotrichum spp. in Japan

    No full text
    Turfgrass used in various areas of the golf course has been found to present anthracnose disease, which is caused by Colletotrichum spp. To obtain potential biological agents, we identified four novel RNA viruses and obtained full-length viral genomes from turfgrass pathogenic Colletotrichum spp. in Japan. We characterized two novel dsRNA partitiviruses: Colletotrichum associated partitivirus 1 (CaPV1) and Colletotrichum associated partitivirus 2 (CaPV2), as well as two negative single-stranded (ss) RNA viruses: Colletotrichum associated negative-stranded RNA virus 1 (CaNSRV1) and Colletotrichum associated negative-stranded RNA virus 2 (CaNSRV2). Using specific RT-PCR assays, we confirmed the presence of CaPV1, CaPV2 and CaNSRV1 in dsRNAs from original and sub-isolates of Colletotrichum sp. MBCT-264, as well as CaNSRV2 in dsRNAs from original and sub-isolates of Colletotrichum sp. MBCT-288. This is the first time mycoviruses have been discovered in turfgrass pathogenic Colletotrichum spp. in Japan. CaPV1 and CaPV2 are new members of the newly proposed genus &ldquo;Zetapartitivirus&rdquo; and genus Alphapartitivirus, respectively, in the family Partitiviridae, according to genomic characterization and phylogenetic analysis. Negative sense ssRNA viruses CaNSRV1 and CaNSRV2, on the other hand, are new members of the family Phenuiviridae and the proposed family &ldquo;Mycoaspirividae&rdquo;, respectively. These findings reveal previously unknown RNA virus diversity and evolution in turfgrass pathogenic Colletotrichum spp

    Data_Sheet_1_Efficient elimination of RNA mycoviruses in aspergillus species using RdRp-inhibitors ribavirin and 2’-C-methylribonucleoside derivatives.xlsx

    No full text
    RNA viruses in fungi (mycoviruses) are model systems for understanding the relationships between eukaryotic microorganisms and RNA viruses. To reveal the effects of mycoviruses on host fungi, it is essential to compare the phenotypes between isogenic fungal isolates with or without RNA virus infection. Since active entry machinery for RNA mycoviruses has never been identified, introducing mycoviruses to fungi is a difficult and time-consuming process. Therefore, most studies have tried to generate virus-free isolates from infected strains by eliminating the mycovirus. However, methods of elimination have not been evaluated in a quantitative and comparative manner. In this study, we established a method to remove mycoviruses from host cells using the antiviral drugs ribavirin, 2′-C-methylcytidine (2CMC), 2′-C-methyladenosine (2CMA), and 7d2CMA, and compared the efficiency of removal in virus-infected strains of Aspergillus fumigatus. The results indicated that treatment with the drugs removed RNA viruses of diverse proportions in the families Chrysoviridae, Mitoviridae, Partitiviridae, Polymycoviridae, and an unclassified RNA virus group. Viruses belonging to Narnaviridae were hardly eliminated by these antiviral treatments when they were the sole infectious agents. We found that 2CMC showed activity against a wider range of RNA mycoviruses compared to ribavirin, 2CMA, and 7d2CMA, although 7d2CMA also efficiently removed dsRNA viruses from the families Chrysoviridae, Partitiviridae, and Polymycoviridae. These results indicated that removal of mycoviruses depends on the specific viral species and antiviral drug. This is the first report demonstrating a preferential antiviral effect against mycoviruses, which will enhance research on microbial RNA viruses and support their elimination from economically important fungi such as edible mushrooms.</p
    corecore