3 research outputs found

    Antisymmetric tensor Z p gauge symmetries in field theory and string theory

    Get PDF
    We consider discrete gauge symmetries in D dimensions arising as remnants of broken continuous gauge symmetries carried by general antisymmetric tensor fields, rather than by standard 1-forms. The lagrangian for such a general Z p gauge theory can be described in terms of a r -form gauge field made massive by a ( r  − 1)-form, or other dual realizations, that we also discuss. The theory contains charged topological defects of different dimensionalities, generalizing the familiar charged particles and strings in D  = 4. We describe realizations in string theory compactifications with torsion cycles, or with background field strength fluxes. We also provide examples of non-abelian discrete groups, for which the group elements are associated with charged objects of different dimensionality

    M-theory interpretation of the real topological string

    Get PDF
    We describe the type IIA physical realization of the unoriented topological string introduced by Walcher, describe its M-theory lift, and show that it allows to compute the open and unoriented topological amplitude in terms of one-loop diagram of BPS M2-brane states. This confirms and allows to generalize the conjectured BPS integer expansion of the topological amplitude. The M-theory lift of the orientifold is freely acting on the M-theory circle, so that integer multiplicities are a weighted version of the (equivariant subsector of the) original closed oriented Gopakumar-Vafa invariants. The M-theory lift also provides new perspective on the topological tadpole cancellation conditions. We finally comment on the M-theory version of other unoriented topological strings, and clarify certain misidentifications in earlier discussions in the literature

    Bipartite field theories from D-branes

    Get PDF
    We develop tools for determining the gauge theory resulting from a configuration of Type IIB D3-branes probing a non-compact, toric Calabi-Yau 3-fold, in the presence of additional flavor D7-branes with general embeddings. Two main ingredients of our approach are dimer models and mirror symmetry. D7-branes with general embeddings are obtained by recombination of elementary D7-brane constituents. These tools are then used to engineer a large set of Bipartite Field Theories, a class of 4d, N \mathcal{N} = 1 quantum field theories defined by bipartite graphs on bordered Riemann surfaces. Several explicit examples, including infinite families of models, associated to both planar and non-planar graphs are presented
    corecore