6 research outputs found

    Anticancer Activities of Thymus vulgaris L. in Experimental Breast Carcinoma In Vivo and In Vitro

    Get PDF
    Naturally-occurring mixtures of phytochemicals present in plant foods are proposed to possess tumor-suppressive activities. In this work, we aimed to evaluate the antitumor effects of Thymus vulgaris L. in in vivo and in vitro mammary carcinoma models. Dried T. vulgaris (as haulm) was continuously administered at two concentrations of 0.1% and 1% in the diet in a chemically-induced rat mammary carcinomas model and a syngeneic 4T1 mouse model. After autopsy, histopathological and molecular analyses of rodent mammary carcinomas were performed. In addition, in vitro evaluations using MCF-7 and MDA-MB-231 cells were carried out. In mice, T. vulgaris at both doses reduced the volume of 4T1 tumors by 85% (0.1%) and 84% (1%) compared to the control, respectively. Moreover, treated tumors showed a substantial decrease in necrosis/tumor area ratio and mitotic activity index. In the rat model, T. vulgaris (1%) decreased the tumor frequency by 53% compared to the control. Analysis of the mechanisms of anticancer action included well-described and validated diagnostic and prognostic markers that are used in both clinical approach and preclinical research. In this regard, the analyses of treated rat carcinoma cells showed a CD44 and ALDH1A1 expression decrease and Bax expression increase. Malondialdehyde (MDA) levels and VEGFR-2 expression were decreased in rat carcinomas in both the T. vulgaris treated groups. Regarding the evaluations of epigenetic changes in rat tumors, we found a decrease in the lysine methylation status of H3K4me3 in both treated groups (H3K9m3, H4K20m3, and H4K16ac were not changed); up-regulations of miR22, miR34a, and miR210 expressions (only at higher doses); and significant reductions in the methylation status of four gene promoters—ATM serin/threonine kinase, also known as the NPAT gene (ATM); Ras-association domain family 1, isoform A (RASSF1); phosphatase and tensin homolog (PTEN); and tissue inhibitor of metalloproteinase-3 (TIMP3) (the paired-like homeodomain transcription factor (PITX2) promoter was not changed). In vitro study revealed the antiproliferative and proapoptotic effects of essential oils of T. vulgaris in MCF-7 and MDA-MB-231 cells (analyses of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS); 5-bromo-20-deoxyuridine (BrdU); cell cycle; annexin V/PI; caspase-3/7; Bcl-2; PARP; and mitochondrial membrane potential). T. vulgaris L. demonstrated significant chemopreventive and therapeutic activities against experimental breast carcinoma

    The hypoxia-responsive long non-coding RNAs may impact on the tumor biology and subsequent management of breast cancer

    No full text
    Long non-coding RNAs (lncRNAs) are DNA transcripts longer than 200 nucleotides without protein-coding potential. As they are key regulators of gene expression at chromatic, transcriptional and posttranscriptional level, they play important role in various biological and pathological processes. Dysregulation of lncRNAs has been observed in several diseases including cancer. Breast cancer is heterogeneous disease with many molecular subtypes specific in different prognosis and treatment responses. Hypoxia, a common micro-environmental feature of rapidly growing tumour is associated with metastases, recurrences and resistance to therapy. Aberrant expression of hypoxia related lncRNAs significantly correlates with poor outcomes in cancer patients, as the lncRNAs play an important regulatory role in the breast cancer-cell survival. Thus, a better understanding of lncRNAs role in the hypoxic conditions of breast cancer is crucial for precise understanding of the tumorigenesis, disease features and poor clinical outcome, especially in highly aggressive breast cancer subtypes (HER2-positive and triple-negative types). Moreover, lncRNAs may represent tumour marker predicting prognosis and therapeutic targets improving precise and personalized therapy for better patient's survival. In this review, we summarize the recent information on lncRNAs in breast cancer with special focus on the hypoxia-responsive lncRNAs and their potential impact on the prognosis, therapy algorithms and individual outcomes. Presented data helps in better understanding of the specific mechanisms predicting new therapeutic agents and strategies for the pharmacological intervention

    The role of dietary phytochemicals in the carcinogenesis via the modulation of miRNA expression

    No full text
    PurposePhytochemicals are naturally occurring plant-derived compounds and some of them have the potential to serve as anticancer drugs. Based on recent evidence, aberrantly regulated expression of microRNAs (miRNAs) is closely associated with malignancy. MicroRNAs are characterized as small non-coding RNAs functioning as posttranscriptional regulators of gene expression. Accordingly, miRNAs regulate various target genes, some of which are involved in the process of carcinogenesis.ResultsThis comprehensive review emphasizes the anticancer potential of phytochemicals, either isolated or in combination, mediated by miRNAs. The ability to modulate the expression of miRNAs demonstrates their importance as regulators of tumorigenesis. Phytochemicals as anticancer agents targeting miRNAs are widely studied in preclinical in vitro and in vivo research. Unfortunately, their anticancer efficacy in targeting miRNAs is less investigated in clinical research.ConclusionsSignificant anticancer properties of phytochemicals as regulators of miRNA expression have been proven, but more studies investigating their clinical relevance are needed
    corecore