526 research outputs found

    RELATIONSHIP BETWEEN REDUCED OF MEDIAL LONGITUDINAL ARCH HEIGHT AND KNEE VALGUS

    Get PDF
    Knee valgus during jump landing is considered to be one of the situations that may cause injury to the anterior cruciate ligament (ACL). Decreased muscle torque during hip abduction is also reported to be a causative factor for knee valgus, as is pronation of the ankle joint (Joseph M et al. 2008). Further, knee valgus may occur when a reduction in the height of the medial longitudinal arch causes ankle pronation, leading to tibial inclination angle to the inside. In this study, motion analysis was performed to investigate the relationship between a reduction in the height of the medial longitudinal arch and knee valgus

    Bubbles, clusters and denaturation in genomic DNA: modeling, parametrization, efficient computation

    Full text link
    The paper uses mesoscopic, non-linear lattice dynamics based (Peyrard-Bishop-Dauxois, PBD) modeling to describe thermal properties of DNA below and near the denaturation temperature. Computationally efficient notation is introduced for the relevant statistical mechanics. Computed melting profiles of long and short heterogeneous sequences are presented, using a recently introduced reparametrization of the PBD model, and critically discussed. The statistics of extended open bubbles and bound clusters is formulated and results are presented for selected examples.Comment: to appear in a special issue of the Journal of Nonlinear Mathematical Physics (ed. G. Gaeta

    Distribution-based bisimulation for labelled Markov processes

    Full text link
    In this paper we propose a (sub)distribution-based bisimulation for labelled Markov processes and compare it with earlier definitions of state and event bisimulation, which both only compare states. In contrast to those state-based bisimulations, our distribution bisimulation is weaker, but corresponds more closely to linear properties. We construct a logic and a metric to describe our distribution bisimulation and discuss linearity, continuity and compositional properties.Comment: Accepted by FORMATS 201

    Fluctuation of the Top Location and Avalanches in the Formation Process of a Sandpile

    Full text link
    We investigate the formation processes of a sandpile using numerical simulation. We find a new relation between the fluctuation of the motion of the top and the surface state of a sandpile. The top moves frequently as particles are fed one by one every time interval T. The time series of the top location has the power spectrum which obeys a power law, S(f)~f^{\alpha}, and its exponent \alpha depends on T and the system size w. The surface state is characterized by two time scales; the lifetime of an avalanche, T_{a}, and the time required to cause an avalanche, T_{s}. The surface state is fluid-like when T_{a}~T_{s}, and it is solid-like when T_{a}<<T_{s}. Our numerical results show that \alpha is a function of T_{s}/T_{a}.Comment: 15 pages, 13 figure

    Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems

    Get PDF
    We present a general discussion of the techniques of destabilizing dark states in laser-driven atoms with either a magnetic field or modulated laser polarization. We show that the photon scattering rate is maximized at a particular evolution rate of the dark state. We also find that the atomic resonance curve is significantly broadened when the evolution rate is far from this optimum value. These results are illustrated with detailed examples of destabilizing dark states in some commonly-trapped ions and supported by insights derived from numerical calculations and simple theoretical models.Comment: 14 pages, 10 figure

    Water Dynamics at Protein Interfaces: Ultrafast Optical Kerr Effect Study

    Get PDF
    The behavior of water molecules surrounding a protein can have an important bearing on its structure and function. Consequently, a great deal of attention has been focused on changes in the relaxation dynamics of water when it is located at the protein surface. Here we use the ultrafast optical Kerr effect to study the H-bond structure and dynamics of aqueous solutions of proteins. Measurements are made for three proteins as a function of concentration. We find that the water dynamics in the first solvation layer of the proteins are slowed by up to a factor of 8 in comparison to those in bulk water. The most marked slowdown was observed for the most hydrophilic protein studied, bovine serum albumin, whereas the most hydrophobic protein, trypsin, had a slightly smaller effect. The terahertz Raman spectra of these protein solutions resemble those of pure water up to 5 wt % of protein, above which a new feature appears at 80 cm–1, which is assigned to a bending of the protein amide chain

    Terahertz underdamped vibrational motion governs protein-ligand binding in solution

    Get PDF
    Low-frequency collective vibrational modes in proteins have been proposed as being responsible for efficiently directing biochemical reactions and biological energy transport. However, evidence of the existence of delocalized vibrational modes is scarce and proof of their involvement in biological function absent. Here we apply extremely sensitive femtosecond optical Kerr-effect spectroscopy to study the depolarized Raman spectra of lysozyme and its complex with the inhibitor triacetylchitotriose in solution. Underdamped delocalized vibrational modes in the terahertz frequency domain are identified and shown to blue-shift and strengthen upon inhibitor binding. This demonstrates that the ligand-binding coordinate in proteins is underdamped and not simply solvent-controlled as previously assumed. The presence of such underdamped delocalized modes in proteins may have significant implications for the understanding of the efficiency of ligand binding and protein–molecule interactions, and has wider implications for biochemical reactivity and biological function

    Preparation of amino-substituted indenes and 1,4-dihydronaphthalenes using a one-pot multireaction approach: total synthesis of oxybenzo[c]phenanthridine alkaloids

    Get PDF
    Allylic trichloroacetimidates bearing a 2-vinyl or 2-allylaryl group have been designed as substrates for a one-pot, two-step multi-bond-forming process leading to the general preparation of aminoindenes and amino-substituted 1,4-dihydronaphthalenes. The synthetic utility of the privileged structures formed from this one-pot process was demonstrated with the total synthesis of four oxybenzo[c]phenanthridine alkaloids, oxychelerythrine, oxysanguinarine, oxynitidine, and oxyavicine. An intramolecular biaryl Heck coupling reaction, catalyzed using the Hermann–Beller palladacycle was used to effect the key step during the synthesis of the natural products
    • …
    corecore