17 research outputs found

    Performance improvement in polymer electrolytic membrane fuel cell based on nonlinear control strategies—A comprehensive study

    Get PDF
    A Polymer Electrolytic Membrane Fuel Cell (PEMFC) is an efficient power device for automobiles, but its efficiency and life span depend upon its air delivery system. To ensure improved performance of PEMFC, the air delivery system must ensure proper regulation of Oxygen Excess Ratio (OER). This paper proposes two nonlinear control strategies, namely Integral Sliding Mode Control (ISMC) and Fast Terminal ISMC (FTISMC). Both the controllers are designed to control the OER at a constant level under load disturbances while avoiding oxygen starvation. The derived controllers are implemented in MATLAB/ Simulink. The corresponding simulation results depict that FTISMC has faster tracking performance and lesser fluctuations due to load disturbances in output net power, stack voltage/power, error tracking, OER, and compressor motor voltage. Lesser fluctuations in these parameters ensure increased efficiency and thus extended life of a PEMFC. The results are also compared with super twisting algorithm STA to show the effectiveness of the proposed techniques. ISMC and FTISMC yield 7% and 20% improved performance as compared to STA. The proposed research finds potential applications in hydrogen-powered fuel cell electric vehicles

    Neural network and URED observer based fast terminal integral sliding mode control for energy efficient polymer electrolyte membrane fuel cell used in vehicular technologies

    Get PDF
    In this research work, a Neural Network (NN) and Uniform Robust Exact Differentiator (URED) observer-based Fast Terminal Integral Sliding Mode Control (FTISMC) has been proposed for Oxygen Excess Ratio (OER) regulation of a Polymer Electrolyte Membrane Fuel Cell (PEMFC) power systems for vehicular applications. The controller uses URED as an observer for supply manifold pressure estimation. NN is used to estimate the stack temperature which is unavailable. The suggested control method increased the PEMFC's effectiveness and durability while demonstrating the finite-time convergence of system trajectories. By controlling the air-delivery system in the presence of uncertain current requirements and measurement noise, the approach ensures maximum power efficiency. The Lyapunov stability theorem has been used to confirm the stability of the presented algorithm. In addition, the suggested method eliminated the chattering phenomenon and improved power efficiency. Given these noteworthy characteristics, the research has the potential to decrease sensor dependence and production costs while also improving the transient and steady-state response in vehicular applications

    Chattering Free Sliding Mode Control and State Dependent Kalman Filter Design for Underground Gasification Energy Conversion Process

    Get PDF
    The fluctuations in the heating value of an underground coal gasification (UCG) process limit its application in electricity generation, where a desired composition of the combustible gases is required to operate gas turbines efficiently. This shortcoming can be addressed by designing a robust control scheme for the process. In the current research work, a model-based, chattering-free sliding mode control (CFSMC) algorithm is developed to maintain a desired heating value trajectory of the syngas mixture. Besides robustness, CFSMC yields reduced chattering due to continuous control law, and the tracking error also converges in finite time. To estimate the unmeasurable states required for the controller synthesis, a state-dependent Kalman filter (SDKF) based on the quasi-linear decomposition of the nonlinear model is employed. The simulation results demonstrate that despite the external disturbance and measurement noise, the control methodology yields good tracking performance. A comparative analysis is also made between CFSMC, a conventional SMC, and an already designed dynamic integral SMC (DISMC), which shows that CFSMC yields (Formula presented.) and (Formula presented.) improvement in the root mean squared tracking error with respect to SMC and DISMC, respectively. Moreover, CFSMC consumes (Formula presented.) and (Formula presented.) less control energy as compared to SMC and DISMC, respectively

    Development of CAVLAB—A Control-Oriented MATLAB Based Simulator for an Underground Coal Gasification Process

    Get PDF
    The Cavity Simulation Model (CAVSIM) is a 3D, parameterisable simulator of the Underground Coal Gasification Process (UCG) that serves as a benchmark for UCG prediction. Despite yielding accurate outputs, CAVSIM has some limitations, which chiefly include inadequate graphical capabilities to visualise cavity geometry and gas production, time-ineffectiveness in terms of parametrisation, i.e., it involves editing, compiling multiple files and checking for errors, and lack of tools to synthesise a controller. Therefore, to compensate for these shortcomings, the services of third-party software, such as MATLAB, must be procured. CAVSIM was integrated with MATLAB to utilise its functionalities and toolboxes such as System Identification, Neural Network, and Optimization Toolbox etc. The integration was accomplished by designing C-mex files, and furthermore, the simulation results in both environments exhibit the same behaviour, demonstrating successful integration. Consequently, CAVSIM has also acquired a controllable structure, wherein parametrisation is now a single-click process; this is demonstrated by a case study outlining the implementation of Model Predictive Control (MPC) on a UCG plant. Moreover, the performance metrics, i.e., Mean Average Error (MAE) and Root Mean Square Error (RMSE) of 0.13, 0.23 for syngas heating value, and 0.012, 0.02 for flowrate quantitatively establishes the efficacy of CAVLAB in designing MPC for the UCG system. The novelty of this work lies in making the software package open-source with the aim of streamlining the research of multiple aspects of the UCG process

    Fuzzy fault-tolerant controller with guaranteed performance for MIMO nonlinearly systems under uncertain initial state

    No full text
    It is always problematic that the initial value of the trajectory tracking error must be inside the area included in the prescribed performance constraint function. To overcome this problem, a novel fault-tolerant control strategy is designed for a second-order Multi-Input and Multi-Output Nonlinear System (MIMO-NLS) with unknown initial states, actuator faults, and control saturation. Firstly, a predefined time convergence (PTC) stability criterion is theoretically proven. Then, an error conversion function is introduced to convert the trajectory tracking error to a new error variable with an initial value of zero, and an adaptive fuzzy system is designed to approximate the compound interference composed of actuator fault, parameter perturbation, control saturated overamplitude, and external disturbance. Based on the backstepping control method, prescribed performance control method, and predefined time convergence stability theory, an adaptive fuzzy fault-tolerant controller for the new error variable is designed and theoretically proven for the predefined time convergence of the closed-loop system. The numerical simulation results of the guaranteed performance trajectory tracking control for industrial robots with actuator faults demonstrate that the adaptive fuzzy fault-tolerant control algorithm has strong fault tolerance to actuator faults and anti-interference capabilities. The convergence time and performance of trajectory tracking errors can be preset in advance, and the parameter settings of the prescribed performance constraint function are not affected by the initial state values

    Chattering Free Sliding Mode Control and State Dependent Kalman Filter Design for Underground Gasification Energy Conversion Process

    No full text
    The fluctuations in the heating value of an underground coal gasification (UCG) process limit its application in electricity generation, where a desired composition of the combustible gases is required to operate gas turbines efficiently. This shortcoming can be addressed by designing a robust control scheme for the process. In the current research work, a model-based, chattering-free sliding mode control (CFSMC) algorithm is developed to maintain a desired heating value trajectory of the syngas mixture. Besides robustness, CFSMC yields reduced chattering due to continuous control law, and the tracking error also converges in finite time. To estimate the unmeasurable states required for the controller synthesis, a state-dependent Kalman filter (SDKF) based on the quasi-linear decomposition of the nonlinear model is employed. The simulation results demonstrate that despite the external disturbance and measurement noise, the control methodology yields good tracking performance. A comparative analysis is also made between CFSMC, a conventional SMC, and an already designed dynamic integral SMC (DISMC), which shows that CFSMC yields 71.2% and 69.9% improvement in the root mean squared tracking error with respect to SMC and DISMC, respectively. Moreover, CFSMC consumes 97% and 23.2% less control energy as compared to SMC and DISMC, respectively

    Hypnosis regulation in propofol anaesthesia employing super-twisting sliding mode control to compensate variability dynamics

    Get PDF
    Regulation of hypnosis level on bi-spectral index monitor (BIS) during a surgical procedure in propofol anaesthesia administration is a challenging task for an anaesthesiologist in multi-tasking environment of the operation theater. Automation in anaesthesia has the potential to solve issues arising from manual administration. Automation in anaesthesia is based on developing the three-compartmental model including pharmacokinetics and pharmacodynamic of the silico patients. This study focuses on regulation of the hypnosis level in the presence of surgical stimulus including skin incision, surgical diathermy and laryngoscopy as well as inter-patient variability by designing super-twisting sliding mode control (STSMC). The depth of the hypnosis level is maintained to 50 on the BIS level in the maintenance phase after improving the induction phase to 60 s using the conventional sliding mode control and 30 s with STSMC. The proposed scheme also compensates the inter-patient variability dynamics including height, age and weight of the different silico patients. Moreover, the surgical stimuli direct the hypnosis level towards the state of consciousness and stimulate the controller to provide continuous drug infusion during the interval 80-90 s. Simulation results witness that the oscillatory behaviour is observed in drug infusion to ensure the moderate level of hypnosis (40-60) for general surgery

    Virtual Sensor Using a Super Twisting Algorithm Based Uniform Robust Exact Differentiator for Electric Vehicles

    No full text
    The highly efficient Interior Permanent Magnet Synchronous Motor (IPMSM) is ubiquitous choice in Electric Vehicles (EVs) for today’s automotive industry. IPMSM control requires accurate knowledge of an immeasurable critical Permanent Magnet (PM) flux linkage parameter. The PM flux linkage is highly influenced by operating temperature which results in torque derating and hence power loss, unable to meet road loads and reduced life span of electrified powertrain in EVs. In this paper, novel virtual sensing scheme for estimating PM flux linkage through measured stator currents is designed for an IPMSM centric electrified powertrain. The proposed design is based on a Uniform Robust Exact Differentiator (URED) centric Super Twisting Algorithm (STA), which ensures robustness and finite-time convergence of the time derivative of the quadrature axis stator current of IPMSM. Moreover, URED is able to eliminate chattering without sacrificing robustness and precision. The proposed design detects variation in PM flux linkage due to change in operating temperature and hence is also able to establish characteristics of fault detection. The effectiveness and accuracy in different operating environments of the proposed scheme for nonlinear mathematical IPMSM model with complex EV dynamics are verified thorough extensive simulation experiments using MATLAB/Simulink
    corecore