
Citation: Ahmad, S.; Uppal, A.A.;

Azam, M.R.; Iqbal, J. Chattering Free

Sliding Mode Control and State

Dependent Kalman Filter Design for

Underground Gasification Energy

Conversion Process. Electronics 2023,

12, 876. https://doi.org/10.3390/

electronics12040876

Academic Editor: Sung Jin Yoo

Received: 14 January 2023

Revised: 7 February 2023

Accepted: 7 February 2023

Published: 9 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Chattering Free Sliding Mode Control and State Dependent
Kalman Filter Design for Underground Gasification Energy
Conversion Process
Sohail Ahmad 1 , Ali Arshad Uppal 1,* , Muhammad Rizwan Azam 1 and Jamshed Iqbal 2,*

1 Department of Electrical and Computer Engineering, COMSATS University Islamabad,
Islamabad 45550, Pakistan

2 School of Computer Science, Faculty of Science and Engineering, University of Hull, Hull HU6 7RX, UK
* Correspondence: ali_arshad@comsats.edu.pk (A.A.U.); j.iqbal@hull.ac.uk (J.I.);

Tel.: +92-331-3666163 (A.A.U.); +44-1482-462187 (J.I.)

Abstract: The fluctuations in the heating value of an underground coal gasification (UCG) process
limit its application in electricity generation, where a desired composition of the combustible gases
is required to operate gas turbines efficiently. This shortcoming can be addressed by designing a
robust control scheme for the process. In the current research work, a model-based, chattering-free
sliding mode control (CFSMC) algorithm is developed to maintain a desired heating value trajectory
of the syngas mixture. Besides robustness, CFSMC yields reduced chattering due to continuous
control law, and the tracking error also converges in finite time. To estimate the unmeasurable states
required for the controller synthesis, a state-dependent Kalman filter (SDKF) based on the quasi-linear
decomposition of the nonlinear model is employed. The simulation results demonstrate that despite
the external disturbance and measurement noise, the control methodology yields good tracking
performance. A comparative analysis is also made between CFSMC, a conventional SMC, and an
already designed dynamic integral SMC (DISMC), which shows that CFSMC yields 71.2% and 69.9%
improvement in the root mean squared tracking error with respect to SMC and DISMC, respectively.
Moreover, CFSMC consumes 97% and 23.2% less control energy as compared to SMC and DISMC,
respectively.

Keywords: underground coal gasification (UCG); state-dependent Kalman filter (SDKF); chattering-
free sliding mode control (CFSMC); energy conversion systems

1. Introduction

Coal plays a pivotal role in global power generation owing to its affordability and ubiq-
uitous presence worldwide. However, the greenhouse gas emissions due to the combustion
of fossil fuels negatively impact the environment and contribute significantly to global
warming [1]. These environmental concerns are addressed by employing various clean
coal energy technologies, for example, the underground coal gasification (UCG) process,
that allows the removal of harmful elements at various stages of the UCG process [2].
UCG process involves drilling two wells from the surface of the earth to the coal beds.
The injection well is utilized to inject the oxidants like air and steam into the coal bed. These
oxidants then react with the ignited coal, and syngas is produced at the production well [3].
Syngas is a flammable gas comprising of higher hydrocarbons, CO, H2, and CH4, that can
be utilized in many applications such as the production of liquid fuel and electric power
generation. In comparison to conventional mining and surface gasifiers, UCG provides an
efficient and cost-effective solution to produce decarbonized gas without putting human
labor in danger underground [4].

Industrial applications like integrated gasification combined cycle turbines (IGCC)
efficiently operate on a constant heating value/calorific value of syngas. The desired heating
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value can be achieved by controlling the flow rate or molar flux of the injected oxidants [5].
The presence of parametric uncertainties, modeling inaccuracies, and external disturbances
constitutes a challenging control problem that has recently become an emerging field of
research [4].

1.1. Related Work

Both model-free and model-based controllers are designed for a UCG system in the
literature, to achieve the desired syngas properties. In [6,7], a conventional Proportional
Integral (PI) controller is designed to control the temperature, concentration, and heating
value of syngas for a lab scale setup for UCG. This model-free controller solely relies
on the output measurements. The authors extended their research work to include the
effect of uncertainties in the measurements in [8]. Later, in [9], an experimental study is
investigated to solve a real-time optimization problem for the UCG process. The optimal
control design technique is used to maximize the CO concentration in syngas. The authors
in [10] conducted an experimental study to achieve the desired calorific value of the syngas
by employing an adaptive model predictive control (MPC). In [11], an Internet-of-Things
(IoT) based monitoring system is utilized to assist a deep learning-based optimal control
technique. In [12], the authors conducted an experimental study to optimize oxygen flow,
airflow, and syngas exhaust to maximize the heating value of syngas.

The controllers designed in the literature presented above are either model-free or
utilize data-driven modeling techniques. However, model-based control strategies are
proven to be more accurate. In this regard, a multitude of research is conducted on various
model-based control approaches for the UCG process. In [5], the authors developed a
1-D control-oriented mathematical model of the Thar coal gasifier, which is utilized to
design various sliding mode control (SMC) techniques for maintaining a desired level
of the heating value. In [13], a time domain UCG process model is developed. The au-
thors also design a conventional SMC for heating value regulation with the assumption
that all the state variables are measurable. To remove this discrepancy, [14] employs a
gain-scheduled modified Utkin observer (GSMUO) to estimate the unmeasurable states
required for designing dynamic SMC. Moreover, a time-varying reference is used to test the
performance of the control techniques. Considering the required computational complexity
and implementation resources for nonlinear techniques, several linear control techniques
are also investigated for the UCG system.

1.2. Gap Analysis

The controllers based on linear models can only work near a particular operating
point. To cover the whole operating range between no-load and full load, a robust nonlinear
controller is required. The tracking error of the heating value does not converge in finite
time for all the aforementioned SMC techniques. However, to cater for the abrupt changes
in the demand for electric power, the calorific value of the UCG process also needs to
change quickly. Therefore, in an IGCC power plant, a robust and finite time convergent
SMC, cf. [15] is required to meet the sudden changes in the electricity demand.

1.3. Major Contributions

In the current research article, a model-based, chattering-free SMC (CFSMC), cf. [16],
is developed for the UCG process model given in [13]. Apart from robustness, CFSMC
exhibits less chattering due to continuous control law, and by the virtue of nonlinearity
in the sliding surface, the tracking error also converges in finite time. To reconstruct
the unmeasurable states necessary for controller design, a state-dependent Kalman filter
(SDKF) is designed, which is a linear discrete-time Kalman filter based on the quasilin-
ear model of [13]. The water influx from the surrounding aquifers is considered as the
input disturbance, cf. [14], to evaluate the robustness of the control scheme. Furthermore,
the performance of the SDKF is evaluated by introducing a measurement noise. Simulation
results indicate that the designed methodology quickly and accurately tracks the desired
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heating value trajectory, outperforming conventional SMC and DISMC (cf. [14]). For brevity,
the contributions of the paper are listed below:

• A finite-time CFSMC is designed for the UCG process to track the desired heating
value trajectory.

• The unmeasured states used to synthesize the model-based controller are reconstructed
using SDKF.

• A thorough quantitative and qualitative comparison is made between the designed
technique and already developed techniques for tracking the heating value for the
UCG process.

The remaining paper is organized as follows: Section 2 outlines the control-oriented
mathematical model of the UCG plant. Section 3 and Section 4 respectively discuss the
synthesis of CFSMC and SDKF for the UCG plant. The simulation results are presented in
Section 5, followed by the conclusion in Section 6 of the manuscript.

2. Mathematical Model of UCG Process

The current study utilizes a nonlinear control-oriented mathematical model of the UCG
process, derived in one of our earlier works [14], for the control design. The mathematical
model consists of two solid components: char and coal, and eight gaseous components:
CO2, O2, CO, H2, CH4, N2, H2O, and tar. Moreover, the model incorporates the effect of
water influx from the nearby aquifers as the disturbance. The following mathematical
equations describe the nonlinear control-oriented UCG model

ρ̇Coal = −M1R1,

ρ̇Char = M2(0.766R1 − R2 − R3),

ṪS =
1

Cs
(ht(T − Ts)− ∆q2R2 − ∆q3R3),

ĊCO = 0.008R1 + R3 − βCCO,

ĊCO2 = 0.058R1 + R2 − βCCO2 ,

ĊH2 = 0.083R1 + R3 − βCH2 ,

ĊCH4 = 0.044R1 − βCCH4 ,

ĊTar = 0.0138R1 − βCTar,

ĊH2O = 0.055R1 + 0.075R2 − 0.925R3 − βCH2O +
α

L
u +

1
L

φ,

ĊO2 = −1.02R2 − βCO2 +
δ

L
u,

ĊN2 = −βCN2 +
γ

L
u.



(1)

The UCG model includes a number of parameters and variables that are listed in
Tables 1 and 2 provides the nominal values of the parameters.

Pyrolysis of coal, oxidation of char, and gasification of steam are dominant chemical
reactions of the current model of the UCG process and are expressed in Table 3. Molecular
formulas of coal, char and tar are respectively CH0.912O0.194, CH0.15O0.02, and (CH2.782)9.
The reaction rates of chemical reactions : R1, R2 and R3 are expressed in (2).
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Table 1. Parameters and states.

Symbol Description Unit

Mi Molecular Weight of solids mol−1 g
T Temperature of gas K
ht Transfer coefficient of heat cal s−1 K−1 cm−3

Cs Solids specific heat capacity cal K−1 g−1

R Chemical reaction rate mol cm−3 s−1

∆qi Char oxidation heat and steam gasification heat cal mol−1

L Reactor’s length cm
βCi Spatial derivative’s approximation [13] mol cm−3 s−1

u Injected gases flow rate mol cm−2 s−1

α, δ, γ Amount (%) of H2O, O2 and N2 in u -
φ Input disturbance: steam’s flow rate, generated from water

influx from nearby aquifers
mol cm−2 s−1

Table 2. Nominal parameters value.

Cs β P ht L ∆q2 ∆q3

7.3920 7 × 10−6 4.83 0.001 100 − 93,929 31,309.7

Table 3. Chemical reactions in UCG.

Sr. Chemical Equations

1. Coal pyrolysis:

CH0.912O0.194
R1−→ 0.766CH0.15O0.02 + 0.008CO + 0.055H2O + 0.083H2 + 0.044CH4

+ 0.058CO2 + 0.0138(CH2.782)9
2. Char oxidation:

CH0.15O0.02 + 1.02O2
R2−→ CO2 + 0.075H2O

3. Steam gasification:

CH0.15O0.02 + 1.02O2
R3−→ CO + H2

R1 = 5
ρcoal
M1

exp
(−6039

Ts

)
,

R2 =
1

1
Rc2

+
1

Rm2

,

R3 =
1

1
Rc3

+
1

Rm3

,


(2)

where,

Rm2 =
1
10

htmO2 ,

Rc2 =
1

M2

(
9.55× 108ρcharmO2 P exp

(−22142
Ts

)
T−0.5

s

)
,

Rc3 =
ρcharm2

H2OP2exp(5.052− 12908
Ts

)

M2

(
mH2OP + exp

(
− 22.216 +

24880
Ts

))2 ,

Rm3 =
1
10

htmH2O,
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the molar fractions mO2 and mH2O are expressed as,

mO2 =
CO2

CT + CH2O
,

mH2O =
CH2O

CT + CH2O
,

where

CT = CCO + CCO2 + CH2 + CCH4 + CTar + CO2 + CN2 . (3)

The nonlinear control-oriented model (1) can be expressed in a control-affine form as

ẋ = f (x) + g1u + g2φ, (4)

where x ∈ R11 is the state vector, u is the control input, f , g1, g2 ∈ R11 are smooth vector
fields, and φ is considered as the external disturbance. The vector of states x is chosen as

x = [ρcoal ρchar Ts CCO CCO2 CH2 CCH4 CTar CH2O CO2 CN2 ]
T . (5)

Vector fields f (x), g1, and g2 are given by (6)–(8), respectively

f (x) =



−M1R1(x),
M2(0.766R1(x)− R2(x)− R3(x)),

1
Cs
(ht(T − x3)− ∆q2R2(x)− ∆q3R3(x))

0.008R1(x) + R3(x)− βx4,
0.058R1(x) + R2(x)− βx5,
0.083R1(x) + R3(x)− βx6

0.044R1(x)− βx7
0.0138R1(x)− βx8

0.055R1(x) + 0.075R2(x)− 0.925R3(x)− βx9
−1.02R2(x)− βx10

−βx11



, (6)

g1 =
[
0 0 0 0 0 0 0 0 α

L
δ
L

γ
L

]T , (7)

g2 =
[
0 0 0 0 0 0 0 0 1

L 0 0
]T . (8)

The measurement vector ym represents the concentration of the gases measured from
the gas analyzer

ym = [x4 x5 x6 x7 x8 x10 x11]
T , (9)

The heating value Hv of the syngas is the variable to be controlled, characterized as

Hv =
H4x4 + H6x6 + H7x7

CT
, (10)

where CT = x4 + x5 + x6 + x7 + x8 + x10 + x11, and H4, H6, and H7 represent heat of
combustion (kJ/mol) of CO, H2 and CH4 respectively.

The objective of the control design is to keep the heating value at the desired level
based on the operating conditions, such as the usage of char and coal in the UCG bed.
Hence, the next section will focus on the design of the controller.
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3. Chattering Free Sliding Mode Control Design

This section presents the design of a CFSMC with the aim of following the desired
syngas heating value (Hvd). Despite being a promising solution, the implementation of the
sliding mode-based control law may result in high-frequency oscillations, known as chat-
tering, because of modeling errors, external disturbances, and discretization. Chattering
is a common issue with sliding mode controllers; however, by the virtue of smoothening
terms in the control law and the sliding surface, CFSMC can effectively resolve the issue of
chattering [17]. Moreover, a carefully designed sliding surface ensures the finite time con-
vergence of the tracking error. Furthermore, conventional SMC often has the disadvantage
of producing discontinuous control inputs that do not meet the requirement of the current
system. Therefore, the above-mentioned issues associated with the conventional SMC are
addressed in this paper by a systematic design of CFSMC [16].

The output to be controlled is the difference between the actual Hv and its desired
trajectory Hvd, e = Hv − Hvd. The control input u appears after differentiating e once,
which inferred that the relative degree of the tracking error e is 1 with respect to the control
input u. Therefore, differentiating the error e with respect to time results in the following
error dynamics

ė = ψ(x, t) + d(x, φ, t) + b(x, t)u, (11)

where ψ(x, t), b(x, t), and d(x, t) are smooth and nonlinear functions of states.
It is pertinent to mention here that ψ(x, t) and b(x, t) are the nominal parts of the

system, whereas d(x, φ, t) includes the perturbed part of the system influenced by a smooth
and bounded input disturbance φ(t) : |φ(t)| ≤ φ0. Considering the control-oriented model
given in (4) and reaction rate expressions in (2), it can be observed that the input disturbance
affects R2 and R3 by changing the concentration of steam. The functions ψ(x, t), b(x, t) and
d(x, t) are defined as

ψ(x, t) =
CT(H4 ẋ4 + H6 ẋ6 + H7 ẋ7)− N(β(x10 + x11) + ẋ4 + ẋ5 + ẋ6 + ẋ7 + ẋ8)

CT
2 − Ḣvd,

d(x, φ, t) =
(CT H4 + CT H6 − 2N)R̃3(x, φ)− (1 + 1.02)NR̃2(x, φ)

CT
2 ,

b(x, t) =
−N(δ + γ)

LCT
2 , (12)

where R̃2 and R̃3 are errors between perturbed and nominal reaction rates, and N =
H4x4 + H6x6 + H7x7.

Now, to mitigate error within a finite time, a terminal sliding manifold is chosen for
the system in (11) as

S = ė + c sgn(e)|e|λ, (13)

where c and λ are design parameters. The value of c is selected such that the polynomial
ρ + c, which corresponds to the system (13), is Hurwitz, meaning its eigenvalues are in the
open left half of the complex plane, with ρ as a Laplace operator. By selecting appropriate
values of c and λ, the ideal sliding mode S = 0 for the error dynamics (11) can be achieved,
resulting in the system converging to its equilibrium point, e = 0, from any initial condition
along the sliding surface S = 0 in a finite amount of time [16]. Hence, the control law is
chosen as

u = − 1
b(x, t)

(ueq + udis), (14)

where
ueq = −ψ(x, t)− c sgn(e)|e|λ,

u̇dis = −(kd + kT + η) sgn(S)− T udis,
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where T, kT , η ∈ <+ are gains of the controller. The constants T and kT are selected such
that kT ≥ Td0, where ||d(x, φ, t)|| ≤ d0 ∈ <+.

The validity of the sliding mode, i.e., whether the trajectories converge to the manifold
S = 0 is proved in the subsequent subsection.

Existence of Sliding Mode

By using (11) and (14), Equation (13) can be re-expressed as

S = d(x, φ, t) + udis. (15)

Now, to prove that the above surface is attractive, a positive definite candidate Lya-
punov function is chosen

V(x, t) =
1
2

S2 > 0, (16)

whose time derivative determined as

V̇(x, t) = SṠ,

= S(ḋ(x, φ, t) + u̇dis),

= S(ḋ(x, φ, t)− (kd + kT + η)sgn(S)− Tudis),

≤ (D0 − kd)|S| − η|S| − |S|(kT + Tudis), (17)

where ḋ(x, φ, t) is the time derivative of d(x, φ, t), and it is smooth and bounded: ||ḋ(x, φ, t)|| ≤
D0 ∈ <+.

Now by selecting kd > D0 and kT ≥ T|udis| we can write (17) as

V̇(x, t) ≤ −η|S|, (18)

which shows that the system in (11) will reach S = 0 in finite time [16].

4. State Dependent Kalman Filter Design

This section focuses on designing a state-dependent Kalman filter (SDKF) for the
UCG plant to estimate the unmeasurable states needed for the CFSMC controller synthesis.
The design of SDKF is based upon the quasi-linear approximation of the UCG mathematical
model (1), which is discussed in the following subsection.

4.1. Quasi-Linear Decomposition

SDKF design is based upon the quasi-linear decomposition, cf. [18] of the UCG
model (1). The conventional Taylor series expansion method can be inadequate in case of
arbitrary operating points. To overcome the limitation, a constrained minimization problem
is introduced to develop a quasi-linear model that accurately approximates the behavior
of the nonlinear model (1) close to any operating point. This decomposition portrays the
actual nonlinear dynamics of (1), i.e.,

ẋ = f (x) + g1u + g2φ = F(x)x + g1u + g2φ. (19)

The expressions for g1 and g2 are already defined in (7) and (8), respectively. The matrix
F(x) ∈ <11×11 can be expressed as

F(x) =

 | | | | |
a1 a2 a3 a4 . . . a11
| | | | |

, (20)
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where ai represents ith column of F(x), given as

ai = ∇ fi(x) +
fi(x)− xT∇ fi(x)

‖x‖2 x, x 6= 0, (21)

where ∇ fi(x) represents the gradient of ith element of the vector field f (x) in the direction
of x.

4.2. SDKF Design Procedure

SDKF employs the algorithm of the discrete-time linear Kalman filter; however, due
to the state-dependent matrices obtained using the quasi-linear decomposition of the
nonlinear system, SDKF can estimate the states of a nonlinear system. The Kalman filter
holds a prominent place in stochastic estimation theory as it involves filtering of both
process (dynamic modeling noise) and measurement noise (sensor noise) and also estimates
the states by minimizing the estimated error covariance [19]. To employ SDKF, the quasi-
linear UCG model is discretized with sampling time ∆t to obtain

xk = Ak−1xk−1 + Bk−1uk−1 + wk−1, (22)

where xk is the state vector defined in (5), Ak−1 = Fk−1∆t + I11, B = g1∆t, and wk−1 is the
zero-mean Gaussian process noise, with known covariance matrix Q defined by [20]

Q = E(wkwk
T). (23)

The measurement equation (9) can be expressed in discrete form as

zk = Hxk + vk, (24)

where zk is the measurement vector defined in (9), H ∈ <7×11 is the output matrix de-
fined by

H =



0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1


, (25)

and vk is the zero-mean Gaussian measurement noise, with known covariance matrix R
defined by

R = E(vkvk
T). (26)

The system’s dynamic model uncertainty and measurement imprecision are used to
choose the Q and R matrices. Selection of R is relatively easy as it considers the conse-
quences of unmodeled dynamics, while choosing Q is typically challenging. Given this, Q
and R are often viewed as design parameters and are calculated by using the trial-and-error
method [21].

The objective of SDKF is to make E(x̂k) = E(xk), where x̂k is the a-posteriori estimated
error, and also to make a-posteriori estimated error covariance Pk as small as possible. SDKF
is designed in two stages; (i) the predictor stage and (ii) the corrector stage. The predictor
stage forecasts a state based on the previous state and is defined as
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¯̂xk = Ak−1 x̂k−1 + Buk, (27)

P̄k = Ak−1Pk−1 AT
k−1 + Q, (28)

where ¯̂xk is the a-priori estimated state and P̄k is the a-priori estimated error covariance.
The estimated state and associated error covariance are then carried forward to the step
of the measurement update. Whereas the corrector stage adjusts the anticipated state
depending on the most recent output measurements, i.e.,

K = P̄k HT(HP̄k HT + R)−1 (29)

x̂k = ¯̂xk + K(zk − H ¯̂xk) (30)

Pk = (I − KH)P̄k (31)

where K is the Kalman gain, x̂k is the a-posteriori estimated state and Pk is the a-posteriori
estimated error covariance. Figure 1 describes the complete working scheme of SDKF.

Figure 1. SDKF algorithm implementation.

5. Results and Discussions

This section presents simulation results of the UCG process along with CFSMC and
SDKF. MATLAB/Simulink (Version: R2018a, running on Laptop: Lenovo i3, 3rd generation
with 4GB Ram ) is utilized to perform the simulations. A qualitative and quantitative com-
parison is carried out between the conventional SMC, dynamic integral SMC (DISMC) [14],
and the proposed CFSMC for desired trajectory tracking of the calorific value. A modified
gain-scheduled Utkin observer (GSMUO) estimates the unmeasurable states for DISMC;
however, SDKF is used to reconstruct states for SMC and CFSMC. To replicate the real-
time conditions, a comprehensive simulation study is performed, taking into account the
practical considerations listed below:
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• A white Gaussian noise with a zero mean and a variance of 0.022 is added to ym. This
variance is selected based on the typical accuracy of the gas analyzer used for taking
measurements in the UCG process [5].

• The values of α, δ, and γ are chosen to be 0.77, 0.154, and 0.076, respectively in (1).
• The desired heating value trajectory is expressed in Figure 2, which represents a

sudden change in the demand for electricity generation.
• The total simulation time is 9 h. To ensure that the heating value reaches the appropri-

ate set point, the UCG system is run in an open loop for initial 5.5 h. The flow rate of
gases is maintained at 2× 10−4 moles cm−2 s−1 during this time. Afterward, the UCG
system is run in a close loop configuration for 5.5 ≤ t ≤ 9 h. Therefore, for better
visualization, the simulation results for evaluating the performance of the controllers
are only shown for the closed-loop operation.

• SDKF works for the complete simulation, i.e., 0 ≤ t ≤ 9 h.
• The gains of CFSMC in (13) and (14) are: c = 69, λ = 0.1, T = 0.1, kd = 0.5, kT = −2,

and η = 1.

The tracking performance of the selected controllers is shown in Figure 2. The reference
trajectory shows a sudden change from a higher to a lower level of the heating value.
To track the abrupt change in the reference trajectory, the gains of the controllers are kept
on the higher side, which results in poor performance of SMC and DISMC as compared to
CFSMC. Figure 3 depicts the tracking error of different control schemes.

5.5 6 6.5 7 7.5 8 8.5 9

194

196

198

200

202

204

206

Figure 2. Syngas Heating value in the closed-loop operation with time.
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5.5 6 6.5 7 7.5 8 8.5 9

-2

-1

0

1

2

3

Figure 3. Tracking -error with various controllers during closed-loop operation with time.

The manipulated flow rate of the inlet gases for different control schemes is presented
in Figure 4. It is evident from the figure that the tracking performance of CFSMC is the
most superior as compared to DISMC and SMC.

A sufficient amount of steam is necessary to ensure the smooth operation of the UCG
reactor. Generally, there are two sources of steam: a mixture of the inlet gas (which in
the current case contains 77% steam) and water ingress from surrounding aquifers, which
is considered as an external disturbance, and its time profile is depicted in Figure 5. It
is evident from Figure 4 that all the controllers manipulate u to mitigate the effect of φ.
However, the results in Figures 2 and 3 demonstrate that CFSMC exhibits more robustness
to compensate φ as compared to DISMC and SMC.

Figure 6 shows the sliding variable designed for CFSMC, which is given by (13).
Despite the disturbance and measurement noise, the system trajectories are confined to the
manifold S = 0.

A comprehensive quantitative analysis has been performed to assess the performance
of CFSMC, DISMC, and SMC. The attributes considered for performance evaluation are
root mean squared error erms and the average power Pavg of the control input u. These
performance indices are characterized as

erms =

√√√√ 1
N

N

∑
i=1

(Hv[i]− Hvd[i])2,

Pavg =
1
N

N

∑
i=1

(ui)
2, (32)

where N represents the number of samples.
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Figure 4. Control input for different controllers with time.
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Figure 5. Steam flow rate generated by water influx from nearby aquifers with time.
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Figure 6. Sliding manifold for CFSMC with time.

The values of the performance indices for CFSMC, DISMC, and SMC are provided
in Table 4. Here, it can be seen that all the controllers consume the same control energy;
however, the performance of CFSMC is superior to its counterparts. In fact, CFSMC shows
57.1% and 58.9% better tracking performance than SMC and DISMC, respectively.

Table 4. Comparison of SMC, DISMC, and CFSMC.

Controller erms Pavg

SMC 0.5736 5.0364× 10−6

DISMC 0.5479 1.9422× 10−7

CFSMC 0.1653 1.4981× 10−7

The remaining part of the section discusses the performance of SDKF. To evaluate
the estimation performance of SDKF; it is essential to start the UCG plant and GSMUO
with contrasting initial conditions. The initial state vectors for the UCG process model and
SDKF are selected as

xT(0) =
[
0.5 0 497 0 0 0 0 0 0 4.2× 10−4 1.6× 10−3],

x̂T(0) =
[
0.48 0 480 0 0 0 0 0 0 4.2× 10−4 1.6× 10−3].

It is pertinent to mention that some values in x(0) and x̂(0) are equal or very close to
each other; this is because the initial values of some states are known.

Seven out of eleven states are measurable, but a full state SDKF is designed so that the
measurement noise can be filtered. The results in Figures 7 and 8 demonstrate how SDKF
filters out the measurement noise from the measured states. The estimated states are then
used for the synthesis of the controller.
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Figure 7. Measured and estimated concentrations of gases with time.

Figure 8. Measured and estimated concentrations of gases with time.

Figures 9–11 depict the estimation of the unmeasurable states of the UCG model. It is
evident from the simulation results that the estimated and actual states are well aligned.
The difference in the true and estimated values of the steam concentration is due to the
disturbance φ.



Electronics 2023, 12, 876 15 of 17

0 1 2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

Figure 9. True and reconstructed solid densities with time.

0 1 2 3 4 5 6 7 8 9

450

500

550

600

650

700

750

800

850

900

Figure 10. True and reconstructed solid temperature with time.
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Figure 11. True and estimated steam concentration with time.

From the simulation results and comparative analysis of different control techniques,
it can be seen that the performance of SDKF is slightly better than GSMUO designed in [14].
However, the design of GSMUO is quite complex as compared to SDKF, which is simply a
linear discrete-time Kalman filter implemented using the quasi-linear UCG model.

6. Conclusions

In this study, a model-based CFSMC is proposed for tracking the desired heating value
trajectory of the UCG process in the presence of external disturbance and measurement
noise. A formal analysis of the stability of the controller is also presented. To enable the
feedback control design, the unmeasurable UCG process states are estimated by utilizing
SDKF, which is based on the quasi-linearization of the nonlinear UCG model. A detailed
qualitative and quantitative comparison is also made between CFSMC-SDKF, SMC-SDKF,
and DISMC-GSMUO techniques. The comparison demonstrates that the CFSMC-SDKF
technique outperforms its counterparts for a rapidly changing reference trajectory.

A possible future extension of this work is the cascade control of the IGCC power
plant, which is comprised of the UCG plant and a combined cycle turbine. The efficacy
of this technique can be analyzed for tracking the sudden variations in the demand for
electrical power.
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Abbreviations
The manuscript uses the following abbreviations:

CFSMC Chattering-free sliding mode control
DISMC Dynamic integral sliding mode control
GSMUO Gain-scheduled modified Utkin Observer
IGCC Integrated gasification combined cycle
SDKF State dependent Kalman Filter
UCG Underground coal gassification
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