2 research outputs found

    Influence of Dielectric Environment upon Isotope Effects onGlycoside Heterolysis: Computational Evaluation and AtomicHessian Analysis

    Get PDF
    Isotope effects depend upon the polarity of the bulk medium in which a chemical process occurs. Implicit solvent calculations with molecule-shaped cavities show that the equilibrium isotope effect (EIE) for heterolysis of the glycosidic bonds in 5′-methylthioadenosine and in 2-(p-nitrophenoxy)tetrahydropyran, both in water, are very sensitive in the range 2 ≤ ε ≤ 10 to the relative permittivity of the continuum surrounding the oxacarbenium ion. However, different implementations of nominally the same PCM method can lead to opposite trends being predicted for the same molecule. Computational modeling of the influence of the inhomogeneous effective dielectric surrounding a substrate within the protein environment of an enzymic reaction requires an explicit treatment. The EIE (KH/KD) for transfer of cyclopentyl, cyclohexyl, tetrahydrofuranyl and tetrahydropyranyl cations from water to cyclohexane is predicted by B3LYP/6-31+G(d) calculations with implicit solvation and confirmed by B3LYP/6-31+G(d)/OPLS-AA calculations with averaging over many explicit solvation configurations. Atomic Hessian analysis, whereby the full Hessian is reduced to the elements belonging to a single atom at the site of isotopic substitution, reveals a remarkable result for both implicit and explicit solvation: the influence of the solvent environment on these EIEs is essentially captured completely by only a 3 × 3 block of the Hessian, although these values must correctly reflect the influence of the whole environment. QM/MM simulation with ensemble averaging has an important role to play in assisting the meaningful interpretation of observed isotope effects for chemical reactions both in solution and catalyzed by enzymes

    Critical evaluation of anharmonicity and configurational averaging in QM/MM modelling of equilibrium isotope effects

    Get PDF
    Anharmonic effects upon vibrational frequencies and isotopic partition function ratios are modelled computationally by means of quantum mechanics/molecular mechanics (QM/MM) methods for two systems. First, the methyl cation in explicit water is considered using a B3LYP/6-31+G(d)/TIP3P method in order to check the previous prediction of an inverse equilibrium isotope effect (EIE) KH3/KD3 for transfer from vacuum to water at 298 K. A full QM/MM treatment including Lennard-Jones interactions predicts significantly inverse contributions from both internal (0.843 0.001) and external (0.894 0.001) modes of the solute. This treatment yields a much larger harmonic EIE (0.753 0.002, averaged over 928 independent solvent configurations) than is obtained either by projecting out the translational and rotational contributions (0.853) or by treating the solvent by a point-charge representation (0.9360 0.0006, harmonic; 0.9366 0.0006, anharmonic). The contribution of anharmonicity to the EIE affects the value only in the 3rd significant figure. Second, anharmonicity is investigated by means of QM/MM potential-energy scans along 12 normal modes for internal and external vibrations of methyl cation in water and for three modes (one stretching and two bending) for the Ha atom at the carbenium-ion centre in cyclopentyl, cyclohexyl, tetrahydrofuranyl and tetrahydropyranyl cations in explicit water and cyclohexane solvents, as obtained by means of atomic Hessian analysi
    corecore